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FOREWORD

This report has been prepared for NASA Manned Spacecraft
Center under Contract NAS 9-11593. The technical monitor of
this effort has been John F. Hanaway of the MSC Guidance
and Control Daivision.

The praincipal investigator for this effort has been
Dr. William S. Widnall. H, Raymond Morth developed the
landing navigation simulation and conducted the simulation
parametric studies. James H. Flanders investigated barometric
altimeter and radar altimeter performance.
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CHAPTER 1

INTRODUCTION AND SUMMARY

1.1 Study Obhjectives and Key Technical Questions

The Space Shuttle Vehicle must have an onboard navigation
system which can determine wvehicle position and velocity
during the many mission phases, including. ascent into earth
orbit, parking orbit, rendezvous, deorbit, entry, and approach
and landing. A possible navigation subsystem to be used in
conjunction with an onboard inertial navigation system (INS)
18 a set of distance measuring eguipment (DME) The use of
precision DME of the Cubic type CR-100, modified to extend 1its
range to 2800 km (1500 nautical miles) appears quite attractaive.
By means of range measurements to transponders at known loca-
tions on the ground, the onboard navigation can update the state
vector after earth orbit insertion (perhaps even during the
boost). Precise range measurements to a transponder on the
Space Station, can provide the in-plane rendezvous navigation
accuracy required. Measurements to the ground transponders
can provide the state vector required for the deorbit maneuver.

It 1s expected that the same onboard equipment, with
additional transponders located near the landing site, can be
used for the approach and landing navigation. If this 1s possible,
1t permits a commonality of navigation equipment that helps
minimize cost, weight, volume, and power., A preliminary
guantitative estimate of the cost saving 1s presented by
Bettwy of TRW in Ref. [l-1].

The praincipal objective of this study has been to determine
1f precision DME, aiding the inertial navigation, can be used
to meet the Shuttle landing navigation accuracy requirements.
The study approach has been to design alternate navigation
configurations, to evaluate the effectiveness of the alternate
configurations by means of analysis and simulation, and finally
to recommend the best system configuration. .

Some of the additional technical questions that have been
answered by this study are:

- Can a navigation filter be designed to give satisfactory
performance from initial updating (after hypersonic entry)
through touchdown and rollout?

-1-
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+ How many transponders are required and what is the best
transponder deployment geometry (considering both failure
tolerance and performance)?

. Is an 1independent source of altitude data required
(such as derived from air data or from a radar altimeter)?
If so, what accuracy specification must be placed on
this subsystem?

. What performance 1s lost 1f the delta-range ("range-rate")
circulrts are not included in the DME subsystem®

« Can the Cubic CR-100 DME be modified to meet the 2800-km-
(1500-nautical-mile) range requirement, still utilizing

omnidirectional antennas and solid-state technology?

- What 1s a preliminary antenna concept for the Space
Shuttle installation?

* What technology risk and procurement costs are
associated with the recommended design?
The Cubic Corporation has provided close support to -
Intermetrics i1n carrying out this study. Cubic has supplied
the models for the CR-100 DME performance used in the total
navigation system analyses and simulations. Cubic has carried
out a complete prelaiminary design of the modifications to the
CR-100 required to meet the specific Shuttle requirements. The
results of the Cubic investigations are presented i1n a separate
volume, Ref. [1-2].

1.2 HNavigation Accuracy Reguired

The navigation accuracy required during the approach and
landing becomes progressively more stringent as the footprint
capability shrinks. Touchdown has the most demanding accuracy
specification.

Clark of TRW and Dyer of NASA/MSC in Ref. [1-3] discuss
the altitude and downrunway total navigation, guidance, and
control (NGC) tolerable dispersions at touchdown. The nominal
touchdown sink rate 1s .9 meter/sec. The maximum tolerable
sink rate (beyond which there might be structural failure) 1is
2.4 m/sec. The minimum acceptable sink rate 1s .45 m/sec.
A smaller sink rate than the minimum would permit the Shuttle
to float down the runway an unpredictable distance before landing

-2
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gear contact. The difference between the nominal touchdown

sink rate and the minimum acceptable sink rate determines the
tolerable 30 dispersion in sink rate (or altitude rate) at
touchdown: .45 m/sec. The 1o tolerable altitude rate dispersion
1s .15 m/sec. It is noted that increasing the nominal saink

rate would increase the tolerable dispersion.

The nominal speed at touchdown is 90 meters/sec. The
touchdown and rollout distance dispersion i1s a function of the
speed error, altitude error and downrunway error. For a wet
runway (coefficient of fraiction 0.2} of 3 km (10,000 ft.) length
and no drag chute, Reference [1-3] states that tolerable lo
dispersions are: speed error 3.3 m/sec, altitude error 3 meters,
down-runway error 72 meters.

Not discussed in the reference are the cross-runway position
and velocity requirements. DLet us assume a 45 meter wide run-
way and a landing gear width of 15 meters. The Shuttle may touch~
down no farther than %15 meters from the runway centerline
or the landing gear will be off of the runway. This establishes
the tolerable 1o dispersion at 5 meters. Furthermore, 1f there
1s a cross-runway velocity at touchdown, the Shuttle may roll
off the runway. Assume the time required to steer-out any
cross-runway velocaity after touchdown 1s of the order of 10 sec.
For the rollout peak lateral error to be no greater than the
basic 5 meter 1o tolerable lateral error, the lateral velocity
must be no greater than .5 m/sec 1o.

The Shuttle touchdown requirements are summarized 1in
Table 1-1. The first column presents the tolerable total
NG&C error. It would be desireable to have the navigation
error absorb only a small part of the total error budget.
If the navigation error component specification 1s set at one-
third of the total budget, then i1ts contribution to the total
sum of squared errors will be almost negligible (one-ninth).
Accordingly, the navigation specification for altitude, altitude
rate, cross-runway position, and cross-runway velocity have
been set at one-third of the total tolerable 1lo error. The
down-runway position and speed navigation specifications have been
set tighter than one-third, since no difficulty 1s anticipated
in achieving tighter goals. The navigation touchdown accuracy
specifications are summarized in the second column of Table
i-1.

“3em
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Table 1-1

SHUTTLE TOUCHDOWN REQUIREMENTS

Tolerable Error (1o)
Nav. Guid. & Cont.

Navigation Accuracy
Required (1o}

Altatude 3m 1m
Altitude Rate .15 m/sec .05 m/sec
Cross—runway

position 5m 1.7 m
Cross—-runway

velocity .5 m/sec .17 m/sec
Down-runway

position 72 m 10 m
Speed 3.3 m/sec 1 m/sec

b
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1.3 ZILanding Navigation System Design

A functional block diagram of the onboard portion of the
landing navigation system 18 presented in Fig. 1-1. The
critical sources of navigation information are the inertial
measurement unit and the precision radio distance measuring
egquipment.,

The inertial measurement unit maintains a coordinate
system with respect to which the vehicle attitude and non-gravi-
tational acceleration (specific force) are measured. The
accelerometer data i1s corrected according to the known instru-
ment misalignments and scale factor errors. The measured specific
force 1s combined with the assumed gravitational acceleration
and is integrated to produce the indicated vehicle velocity and
position. This inertial navigation integration i1s carried out
at a high frequency (10 to 20 steps per sec) to provide an
accurate nearly continuous indication of welocity and position.
The known gyro draift rates and g-sensitive drift-rate cosffi-
cients are used to estimate the change in IMU platform align-
ment. The estimated drift rate plus the computed angular
velocity of the computational coordinate system may be used
to generate torquing signals to the platform gyros (or the plat-
form may be left untorqued and coordinate rotations are
integrated in the software). If the platform is to be torgued,
the torguing commands are corrected according tc the known
gyro input axis misalignments and gyro torquer scale factor errors.

The velocity and position indicated by the inertial naviga-—
tion 1s degraded by several sources of error:

* Uncertainty in the calibration of the wvarious
accelerometer and gyro instrument errors.

* Error in the assumed gravitational model.

* Inatial errors in platform alignment and in indicated
velocity and position.

The various sources of 1nertial navigation error are discussed
in Section 2.2. It is the nature of inertial navigation errors
(at speeds small compared with orbital velocaity) that the hori-
zontal position error grows at a rate of a few kilometers per
hour. The vertical errors are unstable.

The touchdown navigation accuracy required is of the order
of 1 meter. To obtain this positional accuracy relative to the
runway, external position information is mandatory. The
precision DME measures the distance between the vehicle and
transponders on the ground, whose locations are known. The

-5
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measurement 1s based on the phase delay between the modulation
transmitted by the on-board interrogator and the modulation
received from the ground transponder. This delay 1s converted
into a range measurement according to the assumed speed of light
in the atmosphere. Additional calibration 1is applied for the
known transponder delay characteristics. As accuracy better

than one meter 1s desired, the measurement must also be corrected
for the displacement of the vehicle radio antenna with respect

to the inertial measurement unit. Also available 1s a delta-range
measuring capability which integrates the Doppler-shift between
the transmitted and received carrier freguencies.

The range and delta range measured by the DME is degraded
by several sources of error:

*  Uncertainty in the propagation corrections.
+ Uncertawnty in the transponder bias calibration.
+  Multipath random error.
- Egquipment random error.
+ Transponder placement survey error.
These sources of DME erxor are discussed in Section 2.1.

The most stringent accuracy specifications at touchdown
are for the altitude and altitude-rate errors. If the DME-aided
inertial navigation alone is not sufficiently accurate to meet
the touchdown specification, alternate sources of accurate
altitude information would be required. In Sections 2.3 and 2.4
the performance of barometric altimeters and radar altimeters
are discussed. It 1s concluded that barometric altimeters are
not sufficiently accurate to help meet the landing navigation
accuracy specification. Radar altimeters are found to have
excellent accuracy over the runway, but uncertain performance
over the terrain preceding the runway.

Kalman filter theory provides an excellent conceptual
framework for designing the on-board equations needed to combine
the inertial navigation and radio DME data A review of standard
Kalman filter equations 1s presented in Section 3.1. The choice
of navigation errors to be estimated explicitly by the Kalman
filter 1s presented in Section 3.2. In general, the state
variables selected are all slowly varying quantities. This
permits operating the Kalman filter at a much slower sample
rate than the inertial navigation equations,with negligible
increase 1n navigation errors. The information flow 1s as

-
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1llustrated in Fig. 1l-1. Based on the position indicated by

the inertial navigation equations, the range to the selected
transponder i1s calculated. The difference between the DME-
measured range and the onboard-computed range i1s the actual
"measurement” utilized by the Kalman filter. The range-difference
measurement 1s weighted according to the relative size of the
navigation uncertainty compared with the assumed meausrement
random error and 1s used to improve the estimate of the inertial
navigation errors. The estimated navigation errors are used to
correct (rectify) the indicated position and velocity of the
inertral navigation equations.

Given special attention in Chapter 3 are specific design
problems that must be solved to develop a reliable working navai-
gation filter., A low number of filter state variables is
selected t0o minimize the computational requirements. A systematic
procedure for modeling the many sources of navigation error
1s utilized., A compensation for nonlinear difficulties is
included.

Section 3.4 presents the landing navigation initialization

equations, appropriate for the very large (tens of kilometers)
initial position navigation error after hypersonic entry.

1.4 Performance Resulits and Conclusions

The basic tool utilized to evaluate navigation system
performance 1s a detailed simulation of the various sources of
navigation error, the proposed onboard equations design, the
vehicle trajectory, and the transponder deployment. The
simulated performance results are presented in Chapter 4.

A baseline transponder deployment and system design 1s
presented in Section 4.1. Two transponders are placed under
the final approach path and a third transponder 1s placed to
the side. The performance results with the baseline system are
excellent. The baseline DME-aided inertial system meets the
landing navigation accuracy specification, There is no need
for an independent source of altitude data.

Alternate approach paths are tested in Section 4.2 and 1t
18 shown that the results at touchdown are not a function of
the initial terminal area approach pattern.

-8-
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Many alternate transponder locations are tested 1in Section
4.3, It is found that three working transponders are needed
for consistent navigation performance. The simulation results
with only two transponders showed several difficulties. Because
of the very tight altitude and altitude-rate specification,
two transponders under the final approach path are required.
The lateral transponder delivers the necessary cross—runway
accuracy. The best locations for the transponders are presented.
Failure tolerance requires some level of deployment redundancy.
2 recommended deployment of ten transponders 1s presented which
permits landing from either direction on the longest runway
and has a satisfactory probability of supporting a successful

landing

The range-from-the-airport at which initial updating must
begin is discussed in Section 4.4. For a normal entry, initial
updating can be delayed until within 150 km from the airport.
Certain aborts however, may reguire larger initialization ranges.
It i1s shown the radio blackout and radio horizon present no
problem. The uncertainty after landing navigation initialaiza-
tion 1s computed for various points within a 150 km radius of
the airport. Two long simulations of the complete landing naviga-
tion - from initialization at 150 km from the airport through
touchdown and rollout - are presented. The onboard equations as
designed deliver completely satisfactory performance.

The effect of measurement rate on performance is presented
in Section 4.5. With the exception of the transponder over-
flights on final approach, the measurement rate requirements
are very relaxed. Increasing the measurement rate is shown to
do little to improve landing navigation performance.

The performance without the precise delta-rate measurement
circurts does not meet the specification, as shown in Section
4.6. Unless the navigation accuracy specification can be
relaxed, the delta-range circuits should be included 1in the
radioc DME procurement. The recommended specifications for range
and delta-range accuracy are presented.

The effect of early transponder dropout before touchdown
18 presented in Section 4.7. The effect of degraded IMU perfor-
mance 1s presented in Section 4.8.

The principal conclusions of this effort are summarized
in Chapter 5.

i
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CHAPTER 2

SUBSYSTEM PERFORMANCE AND SOURCES OF ERROR

The praimary sources of landing navigation information
will be the specific-force measurements from the accelerometers
1n the i1nertial measurement unit (IMU) and the range plus
delta~range measurements from the precision distance measuring
equipment (DME). The performance and gsources of error in the
DME and IMU are discussed in this chapter. Also discussed are
the performance of alternate sources of altitude information-
barometric altimeters and radar altimeters.

2.1 DME Performance and sources of Error

The Cubic Corporation Model CR-100 precision range/delta-
range measurement set represents the state—-of-the-art in
highly accurate DME. The CR-100 employs an airborne inter-
rogator and several ground-placed transponders. The interro-
gators and transponders operate on common freguencies. The
transponder whose response 1s desired is activated by a discrete
transmitted address code. Range is determined by continuous-
wave phase comparison., As many lower frequency modulation
tones are employed as necessary to achieve an unambiguous
range measurement at the maximum range. The delta-range measure-
ment 15 an integration of the carrier-frequency-Doppler shaift.
The transponder selection, the duration of the delta-range
integration interval, the time at whaich the range and delta-
range measurements are taken are all under controli of the
on-board central computer. This provides maxamum flexibility
to optimize measurement selection logic, measurement rates, and
IMU/DME data synchronization., A CR-100 variation, desaigned to
meet Space Shuttle requirements, 1s presented in Ref. [2-1].

The most stringent navigation accuracy reguirements in
the Shuttle entry and landing are associated with the final

approach, touchdown, and rollout. The accuracy of the CR-100
during final approach and landing 1s summarized in Tables 2-1

-11-
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and 2-2, from Ref. [2-1].

The largest source of random range error 1s possible
multipath error. For the large index of modulation used 1in
the CR-100, 1t 1s expected that multipath error will be no
larger than 0.9 meter lo. Analysis and experimental data
presented in Ref. [2-1] support this expectation. At high
elevation angles, the multipath error should be negligible.
The other non-multipath random errors total 0.2 meter lo.

The retardation of the speed-of-light by the atmosphere
1s about 300 parts per million at sea level. At higher
altitude the retardation is less. Assuming a standard day
{temperature, pressure, humidity), the measured range can be
corrected such that the residual uncertainty in measured range
1s 50 ppm log. For example, on final approach 10 km from a
transponder, the propagation error after correction is 0.5
meter lo. Even better accuracy (of the order of 10 ppm) can
be achieved 1f the actual temperature, pressure, and humidity
in the terminal area is utilized in correcting the measured
range. However, the performance results in this study show that
this additional accuracy 1is not required,

The transponders must be carefully placed at known
surveyed locations. If the positions of the transponders are
determined by survey to an accuracy of 10 ppm of distance from
the runway, then the effect of survey error should be negli-
gible compared with the 50 ppm propagation error.

The delta-range measurement performance, shown in Table
2-2, has a total random error of .006 meters. This 1s based
on theoretical analysis. The discussion in Ref. [2-1] adds
that high acceleration/high speed tests have shown a somewhat
larger random error of .016 meters.

A typaical value for the propagation error effect in a
delta-range measurement while the vehicle i1s on final approach
may be calculated by assuming a range rate to a transponder
of 100 m/sec and a 10 sec delta-range measurement interval.
The 50 ppm sea-level propagation error for the change in
range of 1000 meters i1s 0.05 meter.

Not included in the range and delta-range error budgets
of Tables 2-1 and 2-2 are: IMU-to-antenna-position correction
error, vehicle bending error, 1inertial navigation position
guantization, and measurement-time uncertainty. These effects
can be held small compared with the 0.2 meter 1o non-multipath
range random error. But they cannot be held small compared

-12—
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Table 2-1 CR-100 RANGE ERROR BUDGET DURING FINAI. APPROACH
AND LANDING

I. RANDOM ERROR (including rapidly varying error)

Exrroxr Source lo Magnitude

A. Ranging error due to finite signal—-to-
nolise ratio and equipment added noise 0.09 meter

B. Phase shift over dynamic range of
ranging operations 0,15 meter

C. Phase shift of interrogator due to

vibration, shock and g-loading Negligible
D. System error due to craft dynamics
(600 m/sec and 300 m/sec2) 0.06 meter
E. Multipath error in ground-to-air
range links 0 9 cos € meterx
F. Digitization Error .09 meter
RSS TOTAL [(.9 cos 8)2+(.2)2]1/2 meter

where € = Elevation Angle

II. BIAS ERROR (including slowly varying error)
A. Calibration (Equipment) 0.3 meter
B. Phase Shift with Temperature 0.15 meter

C. ©Scale Factor
1. Stability of crystal oscillators 0.1 ppm
2. Uncertainty in velocity of laght 0 5 ppm

D. Propagation

Sea-level uncertainty after standard
correction 50.0 ppm

=13~
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Table 2-2 CR-100 DELTA-RANGE ERROR BUDGET DURING FINAL
APPROACH AND LANDING

I. VELOCITY-INDEPENDENT RANDOM ERROR
Error Source lc Magnitude

A. Delta-range error due to finite
signal-to-noise ratio and equipment

added noise .003 meter
B. System error due to craft dynamics
a = 300 meter/sec2 .0003 meter
C. Digitization Error . 004 meter
D. Multaipath . 003 meter
RSS TOTALl .0086 meterl

ITI. VELOCITY-DEPENDENT ERROR
A. Stability of Crystal Oscillatoer 1 ppm
B. Uncertainty in Velocity of Laight 0.5 ppm

C. Propagation

Sea-leval uncertainty after standard 50.0 ppm
corrections

1 Measurement errors under test have been observed at
.016 meter lo.

-14-
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Table 2-3 Model for Range and Delta-Range Errors
Utilized in Simulation

range error = ebl + rl eP f(h) + e + .

delta-range error = Arl ep £f(h) + eAr

ebl 1-th transponder bias 0.3 meter lo

ep propagation error 50 x 10_6 1o

e multipath random error 0.9 cos & meter 1o
e. other random error \ 0.2 meter lo

e, delta-range random error 0 1 meter lo

r actual range to transponder i

Arl actual change-in-range to transponder 1
-h/hs

£() = (L-e  5)/(b/n))

hS scale height 6900 meters

-15-

INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 0213¢ - (617) 868-1840



with the 0.006 meter 1o delta-range random error. Therefore,
the extremely precise delta-range data cannot be fully exploited.
A degraded accuracy of 0.1 meter 1l has been utilized in this
study as the total delta-range random error from all sources.

The mathematical model utilized in the simulations to
represent the range and delta-rande measurement errors is
summarized in Takle 2-3, The decrease 1n the propagation error
with altitude 1s modelled by the function f£(h) which has maximum
value unity at sea level. This exponential model 1s similar
to the error model recommended 1n Appendix B of Ref. [2-1],

The random errors ey, ey, and epr are generated for each measure-
ment by a Gaussian random number generator. The transponder
biases epn; and the propagation error e, are selected once

then held constant through the simulation. The actual evolu-
tions of ranges, delta-ranges, and altitude are utilized.

2.2 Inertial Navigation Errors

It 15 assumed that the Space Shuttle will have three or four
inertial measurement units aboard (the total number required
18 determined by failure considerations). These IMUs will
have performance characteristics comparable to present generation
"off-the—-shelf" equipment. The assumed IMU component errors
are as presented in Table 2-4. These data are from Ref. [2-2]
(except that a distinction has been made between g-sensitive
drift caused by acceleration along the spin axis and the input
axis).

A model of an IMU having the baseline component-error
uncertainties has been implemented in the landing navigation
simulation. Several implementation decisions are necessary to
proceed from the component errors of Table 2-4 to a simulated
inertial navigation system.

It 1s assumed that the IMU 1s a gimballed system (not
a strapdown system). Two INS mechanizations are possible:
1) the platform maintains a constant alignment in inertial space,
2) the platform i1s torgued to maintain level. The first mech-
anization 1s usually selected for spaceflight. The 1inertial
navigation equations are very simple in inertial coordinates.
The second mechanization 1s usually selected for ship or aircraft
applications. By maintaining level, the IMU components may
be kept in the most favorable orientation with respect to the
persistent lg specific force vector. The disadvantage of the
level mechanization 1s the greater arithmetic complexity of the
inertial navigation eguations in rotating coordinates.
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Table 2-4 BASELINE IMU COMPONENT ERRORS

Error Uncertainty (lo)

Gyro

g-insensitive drift rate .03°/hr

g-sensitive drift (input axis) .10°/hr/qg

g-sensitive drift (spin axis) .03%/hx/g

torquer scale factor 200 ppm

input axis alignment 1l arc min
Accelerometer

bias 5 x 10-4 m/se02

scale factor 100 ppm

input axig alignment 15 arc sec
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It i1s not known which implementation will be selected for
Shuttle. In the simulation we have assumed a local level imple-
mentation with wander azimuth. That 1s, the platform 1s torqued
to maintain level, but the azimuth gyro is not torqued. The
alignment of the platform with respect to north (the wander angle)
1s calculated in the navigation equations.

There are two different types of IMU platforms: those
that rotate some of their components (such as the Delco Carousel
1V) and those that do not (such as the Laitton LTN-51 or Singer/
Kearfott KT-70). It was decided not to utilize a detailed
simulation of the Carousel IV available from an earlier program,
Ref. [2-3]. The greater complexity of the rotating gyros and
accelerometers would complicate the task of relating navigation
results to i1ndivaidual instrument errors. The prototype platform
selected for simulation in this study was the XKT-70.

The KT-70 utilizes twc two-degree~of-freedom gyroscopes
(rather than three single-degree-of-freedom gyros). When the
platform 1s level, one gyro has i1ts spin-axis horizontal and
the other gyro has i1ts spin-axis vertical. The spin-axis-—
vertical gyro feeds roll and pitch information to the platform
stabilization loops, while the other gyro supplies azimuth
information. Test data on the performance of the KT-70 gyros
(supplied by Singer) indicates that the spin-axis acceleration
sensitive gyro drift rate 1n a lg field is about the same level
as the g-insensitive drift rate. The input-axis acceleration
sensitive drift i1s larger. Hence, the choice of data presented
in Table 2-4.

In the Monte-Carlo simulations the IMU component errors
are selected at the beginning of each run by a random number
generator according to the standard deviations given in Table 2-4.
In the single-case simulations, the IMU utilized generally has
all error coefficients of value plus log. However, input axis
misalignments of all plus l¢ are not used as this wmaintains input
axis orthogonality, which i1s not realistic. Therefore, both
plus and minus 1o misalignments are utilized such that the gyro
and accelerometer input axes are each skewed toward the other
two axes,

The azimuth alignment of the platform at the beginning
of the simulation 1s such that the spin axis of the azimuth
gyro points north.
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The 1nertial navigation equations have an 1mperfect mathe-
matical model for the gravitational acceleration. This 1s an
additional source of inertial navigation error. The local
variations 1n the direction of the gravity vector are called
the easterly and northerly deflections of gravity. The local
variation in gravity magnitude is called the gravity anomaly.
The landing navigation simulation utilizes the gravity deflection
and anomaly model suggested in Ref. [2-3]. The error in
each of the three gravitational acceleration components 1s
modeled by two terms+ a local mean value and a local random
variation having a certain standard deviation and correlation
distance. The data assumed i1s presented in Table 2-5.

Table 2-5 GRAVITY VARIATIONS IN THE TERMINAL AREA

Standard Correlation
Component Mean value Deviation Distance
(m/secz) (m/secz) {km)
Bast deflection 2 x10°% | 2.6 x 107% 18.5
North deflection 2 x 102 1.7 x 1074 18.5
Anomaly (magnitude) 2 x107% | 3.5 x 1074 110

The landing navigation simulations begin after hypersonac
entry during the approach to the terminal area. At this point
an time 1t 1s assumed the platform alignment 1s in error by
1.5 milliradian lo about each axis. The inertial navigation
velocity errors are 10 m/sec 1o in each direction. The inertial
navigation position errors are 30 km 1o in the east and north
directions and 3 km lo 1n altitude. The smaller altitude error
assumes that the measured lift and drag acceleration has been
used to infer the altitude. It will be shown that the exact
values of these assumed initial errors (after hypersonic entry)
have little influence on the final approach and touchdown
navigation accuracy.
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2.3 Barometric Altimeter Errors

It 1s recognized that during final approach, flare, and
touchdown, the DME-aided inertial navigation system does not
have consistently good radio~altitude-measuring geometry. The
navigation must rely on the inertial navigation to extrapolate
the altaitude and altitude rate from the last transponder over-
flight. If satisfactory performance cannot be achieved with
the DME-aided inertial system, one would seek additional sources
of accurate altitude information. One candidate source would
be the barometric altitude from the air-data system. What
level of accuracy can be obtained from barometric altimeters”

It 1s helpful to review the basic atmospheric physics that
influences barometric altimeter performance. The incremental
change 1n pressure dp for an incremental change in height dh
1s governed by the hydrostatic equation

dp = -p g dh (2-1)

where p 1s the atmospheric density and g is the acceleration of
gravity. From the 1deal gas law, the density may he expressed as

(2-2)

where Wy 1s the molecular weight (the mass of one mole) of air,
R 1s the universal gas constant, and T 1s the absolute temperature.
Combining Egs. {2-1) and (2-2) gives

d(in p) = —-I-{-‘TE dh (2-3)

It 1s clear that the atmospheric pressure 1s approximately
exponential, because 1f one neglects the variation of gravity
and temperature with altitude, the integral of Eg. (2-3) is

P=p_ e RT (2—4)

-20-

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840



where p, 1s the sea-level pressure. A more exact tabulation of
pressure versus altitude can be constructed by integrating numeri-
cally Egq. (2-3) using standard models for the variation of gravity
and temperature with altitude. Such tables are presented in Ref.
[2-4]. '

The pressure at the surface of the earth wvaries from day to
day and from location to location. If an altimeter has the
wrong value for the sea-level pressure, 1t will indicate the
wrong altitude. Assuming the exponential atmosphere of Eg. {(2-4)
an altimeter should be a logarithmic detector and should present

h = hs In Py ~ hs iIn p (2-5)

where the scale height hs is

hg = ~— (2-6)

If the assumed sea-level pressure pg 1s 1h error by Apo, then
the indicated altitude will be 1n error by

h

s
e = —= A 2-7
P, P, Py ( )

Note that for the exponential atmosphere, this error 1s independent
of altitude.

The sea-level pressure deviation-from-standard-pressure
varies as one travels from region to region. This 1s related
to the familiar pattern of i1sobars that one sees on a weather
map. Ref. [2-5] shows a typical contour map of the 500 millibar
pressure surface over the continental United States and Atlantac,
The altitude of this constant-pressure surface varies from
5400 meters in a "low" over Newfoundland to 5880 meters in a
"high" over Bermuda. These locations are about 2000 kilometers
apart. The average value of the gradient between these loca-
tions 1s therefore 0.2 meters of altitude per kilometer of
horizontal distance.

A smaller error effect, also related to the pressure -

gradient, 1s due to the motion of the weather system from West to
East. At a fixed location (such as the airport) this causes
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a variation of the indicated altitude at a rate typically
about 10 meters per hour.

It 1s clear from Eq. (2-3) that the difference in the height
of two surfaces of constant pressure 1s proportional to the mean
temperature of the layer of air separating them. Assuming the
exponential atmosphere of Eg. (2-4), one can show that the

error etemp in the indicated altitude 1s
_ AT
Ctemp ~ T h (2-8)

where AT 1s the error in assumed temperature and T i1s the standard
temperature. Consider a typical temperature error to be 10°C
with standard temperature about 300°K. In this case the altimeter
error 1s 3% of the indicated altitude.

The exponential atmosphere assumes a constant temperature.
Actually the temperature decreases with altitude at a lapse rate
of about 0.6°C per 100 meters. Above the tropopause at 10 km,
the temperature holds constant at about -40°C. Because of the
temperature variation, Eq. (2-8) i1s not strictly correct. However,
1t 1s approximately correct 1f one defines AT to be the average
deviation of the temperature from the standard lapse rate profile.

In the above discussions of meteorological errors, the
pressure under consideration was the static pressure (that is,
the pressure at zero aircraft velocity). One must infer this
static pressure from measurements taken in the moving aircraft,
Because of the variations in the air speed on the surfaces of the
aircraft, the actual pressure on the aircraft can be higher or
lower than the free-stream pressure. The difference in pressure
15 called the static defect, Ref. [2-6] discusses this source
of error. The static defect at a particular location has been
observed to be proportional to the dynamic pressure Q. Hence,
1t 1s convenient to express static pressure errors in coefficient
form as

C = —= (2-9)

where p 1s the pressure at the static port, pg is the free-

stream static pressure (quantity to be measured) and Q 1s the
dynamic pressure. For a properly located port (such as a port

on the side of a nose boom) the static pressure coefficient C -
1s of the order of 0.01 for both subsonic and supersonic fllggt.

At Mach 1, however, the fluctuations in CP can be as large as 0.3.
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It can be shown, assuming the exponential_ atmosphere, that
the altimeter error 1s of the form egp = C v“, where the
coefficient Cqy 1s a constant (not a %unctlon of altitude or
density). A typical value for Cgp 18 5 X 10~4 m/(m/s)z.

Additional sources of static pressure measurement error
are discussed in Ref, [2-7]. Quoting from this reference,

"The static pressure source hole 1is located flush
with the aircraft skin in an area of reasonably
constant cross—section. In addition to boundary
layer effects, the static source hole 1is extremely
sensitive to streamline disturbance caused by the
wing and fuselage in different attitudes. The
best static source hole was formerly found by
flaight testing but, for economic reasons, 1S5 NOW
determined i1n the wind tunnel using models of

both the aircraft and the wind conditions. Both
pitot and static probes are affected by adiabatic
temperature change as a result of pressure varia-
tions and both are influenced by large pressure
changes from ground cushion effect at low altitudes "

~

One avionics systems manager for a major transport aircraft
builder comments [2-8] on a known tendency for Ap/Ah at the
static source to go momentarily positive during takeoff.

The problem of statlic source calibration was investigated
further by phone conversations with test instrumentation personnel
at another major aircraft builder [2-91, [2-10}. The following
technique was described. Static sources are evaluated in the
wind tunnel. When flaght tests being, a master static source 1s
provided by trailing a cone from the test aircraft. This 1s
calibrated stadiametrically by over-flying a vertically-oriented
camera on the ground. On-board calaibration of static sources
1s obtained by measuring tne Ap between the master source and
the proposed operational source. This entire operation yields
uncertainties in the region of 1 to 3 meter one sigma, for
steady state conditions.

The static pressure 1s led to the electrical transducer by
means of tubing. The static pressure in the cavity of the
instrument adjusts to the static pressure at the port by the flow
of air through the ftubing. Ref. [2-6] indicates that the time
constant for a typical aircraft installation 1s about 0.25 sec.
At an altitude rate of 10 meters/sec, the altimeter lag would
be 2.5 meters. It 1s assumed that one can compensate this error
source so that the remalning uncertainty is negligible.
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The last category of errors are the instrument errors,
especially the transducer errors in converting the static pressure
in the cavity into an electrical signal. A good pressure trans-
ducer has good lainearaity, good repeatability, and low hysteresis.
Tt must be insensitive to vibration, acceleration, corrosion,
humidity, and changes in ambient temperature. An extremely high
quality transducer would be required for Shuttle 1f 1t 1s to
assist the navigation in meeting the 1 meter 1¢ altitude accuracy
specification at touchdown. It 1s assumed that instrument
accuracy of the order of 1 meter 1o can be obtained.

The typical level of the various sources of error are
summarized in Table 2-6.

Table 2-6 BAROMETRIC ALTIMETER ERROR SOURCES

Error Source (mgggiitgénzgtiigée)
Gradient of constant pressure
surface 0.2 m/km horiz. dist.
Time~-variation 10 m/hour
Non-standard lapse rate 30 m/km altitude
Static pressure defect 5 x lO-b4 m,/(m/sec)2
Instrument error 1l m

Two daistinct methods of utilizing barometric altimeter
data can be considered for Shuttle landing navigation. 1In the
first method, one estimates the altimeter error bias during the
last radio transponder overflight. The change in indicated
barometric altitude after the overflight is then hopefully
an accurate source of true altitude. Assume the inner approach
transponder i1s located 3 km from touchdown. Assume the gliding
Shuttle at this point 1s at an altitude of 300 meters and a
speed of 110 m/sec. Assume at touchdown the speed i1s 80 m/sec.
Then, the navigation accuracy of this method would be as
summarized in Table 2-7.
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Table 2-7 BAROMETRIC ALTIMETER ERROR AT TOUCHDOWN,
EXTRAPOLATING RADIC FIX ON FINAL APPROACH

Error Source Uncertainty (1lo)
(meters)
Radio altitude uncertainty at trans-
ponder overflight (bias and random) .4
Gradient of constant pressure
surface .6
Time variation of pressure-altitude
at airport .1
Non-standard lapse rate 9.0
Static pressure defect 2.8
Instrument errors 1.0
Root sum sguare all sources 9.5
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The largest source of error i1s due to the non-standard
lapse rate. It might be possible to reduce this source of
error by telemetering to the Shuttle the actual temperature
profile of final approach, based on measurements taken shortly
before landing. This would be an undesireable operational
procedure. The next largest source of error 1is the static
pressure defect., It 1s difficult to argue that better horizontal
flight test procedures for Shuttle will reduce this source of
error. We conclude that the barometric altimeter 1s not
sufficiently accurate for altitude navigation to touchdown by
means of the first method.

The second method of utilizing a barometric altimeter 1is
to measure precisely the pressure altitude at the touchdown
point and to telemeter the appropriate altimeter setting to the
Shuttle shortly before 1t lands. Assume this 1s done 6 min
before touchdown. The navigation accuracy of this method is
summarized in Table 2-8.

Table 2-8 BAROMETRIC ALTIMETER ERROR AT TOUCHDOWN
WITH TELEMETERED ALTIMETER SETTING

Error Source Uncertainty (1lo)
(metexrs)
Time variation of pressure
altitude at airport L.0m
Static pressure defect 3.2 m
Instrument errors 1.0 m
Root sum sguare, all sources 3.5 m

The large lapse-rate error of the first method 1s
eliminated. The static defect error associated with the
80 m/sec assumed touchdown speed 1s the largest source of error.
The assumed 1.0 m instrument error is probably optimistic, as
this 18 not the instrument repeatability for a short glide from
the inner approach transponder (as in the first method) but 1is
the instrument repeatability since its last preflight calibration. -
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While the lapse-rate error does not influence the altitude
error at touchdown {(in the second method), it does influence
the altitude-rate error. The 9 meter altitude-error change
experienced during the last 30 sec before touchdown (Table 2-7)
1s a 0,30 m/sec error in altitude rate. This exceeds the altitude-
rate specification of 0.05 m/sec.

Reference [2-1l1] reports f£light tests with the barometric
altimetry systems aboard a Boeing 720 and a Convair 880 on
instrument landing system (ILS)} approach paths. Of particular
interest was, could barometric altimetry be used as an
accurate indication of the 30 meter (100 ft.)} decision height?
It was concluded that a height of 30 meters could have been
determined during descent to an average standard deviation of
1.7 meters for the Boeing 720 and 2.3 meters for the Convair
880, provided the barometric altimetry systems were corrected
by the amount of the mean error for each case. With the higher
Shuttle landing speed, the larger error shown in Table 2-8
seems consistent with the jet-transport flight test results.

We conclude that the second method of utilizing barometric

altimeter data 1s also not sufficiently accurate for altitude
and altitude-rate navigation to touchdown.

2.4 Radar Altimeter Errors

Alternate candidates for an independent source of altitude
data are radar altimeters. What level of accuracy can be obtained
from radar altimeters?

The continuous-wave (CW) radar altimeter 1s the type
widely used i1n airlaine transports for approach and landing.
It 1s given a careful specification in ARINC characteristic
552 {Ref. 2-12) and 1s in production to this specification.
Altitude accuracy {20) 1s specified on page 19 of the basic docu-
ment to be:

Range: -6 to +150 meters alt.
Accuracy. f.6 m or T2% of the indicated altitude,
whichever 1s greater
Range: Above 150 m of altaitude
Accuracy: 15% of i1ndicated altitude.
27
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Supplement 4 calls, however, for tightening of the specification
to the values of

Range: 0 - 30 m altitude
Accuracy: .45 m. or 1.5% whichever 1is greater
Range: 30 - 150 m.
Accuracy: .€ m or 2% whichever is greater
ARINC 552 also has a rate specification on page 51. Thas
feature 1s available but i1s rarely used [2-13]. The values are
Range. Ground level to 15 m.

Accuracy: 10.10 m/sec or t10% of the indicated rate
whichever 1is greater

Range: 15 m to 150 m

Accuracy: ¥0.15 m/sec or 1102 of the indicated rate, which-
ever 1ls greater.

ARINC 552 calls for filtering to have an effective first order
lag time constant not to exceed 0.10 seconds in any case.

There are several types of errors which contribute to the
accuracy figures cited above, most of which have known cures.
Because of the ARINC 552 CW mechanization, i1t has certain special
characteraistics. From 750 meters to 60 meters, 1t may well be
measuring the average of rough terrain below 1t. From 60
meters to the touchdown, 1t will track the actual profile below
1t, although 1f the antennae are canted forward due to a large
angle of attack, it 1is not clear whether or not, the normal
to the aircraft or the normal to the ground will be measured.

There 1s a type of error known as "double bounce" which
has been observed., This occurs when the aircraft is very low
over a smooth surface and the receaver circuitry does not lock
on to the lowest beat frequency which 1s the praimary return.
This error has been eliminated by commercial vendors of ARINC
552 equipment, but there would have to be a specific study made
of the multiple-return environment in a shuttle installation,

The pulse type of radio altimeter 1s the other candidate
for this application. An accuracy figure of 0.6 m 20 or 2% was
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given [2-141 by a vendor of military eguipment of this type.

The pulse device always measures the desired normal to the ground
and there are no double bounce problems. The above accuracies
hold for a wide variety of Mil Spec. environments and are used

in configurations where they have demonstrated freedom from the
interference of landing gear, pods, etc. The same source cited

a typical rate accuracy for these pulse type radars as being
around 0.6 m/sec.

Radar altimeters have been used by WASA in the Surveyor
spacecrafts and the Apollo Lunar Module., Much larger altitude
range was obtained i1n these altimeters. However, the accuracy
was somewhat degraded compared with the above aircraft radar
altimeters.

Both the CW and pulse aircraft radar altimeters can deliver
excellent altitude accuracy over the runway concrete just before
touchdown. The problem is that before reaching the runway, the
measured height over the terrain can be significantly different
from the altitude with respect to the runway as shown in
Fig. 2-1 from Ref. {2-15], The Shuttle will cross the runway
threshold at a high speed (about 100 m/sec). If one needed

accurate altitude updates for ten sec before reaching the threshold,

one would need to store the terrain profile for the last 1000

meters before the runway A demonstrated accuracy of about 1

meter RMS error would be required for this tabulated or curve-
fitted terrain data at each possible Shuttle landing site.

We do not have terrain data for the proposed Shuttle
landing sites, so we cannot make a clear recommendation as to
the usefulness of radar altimeters in helping meet the Shuttle
landing navigation accuracy specaification. Fortunately, it 1s
demonstrated in Chapter 4 that no independent source of alti-
tude data 1s reguired to meet the specification. The CR-100
DME-aided 1inertial system alone can do the job.
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CHAPTER 3

ON-BOARD NAVIGATION EQUATIONS DESIGN

3.1 Kalman Filter Algorithm

Kalman filter theory provides an excellent conceptual
framework within which to design the onboard equations for
blending the inertial navigation with the radioc or other
measurement data. A Xalman filter is a real-time recursive
data processing algorithm. It automatically computes
optimal time-varying gains with which to weight each measure-
ment as a function of the measurement geometry and the rela-
tive maghitudes assumed for the navigation error versus
the measurement error. The navigation error dynamics and
navigation disturbances are also taken into account.

3.1.1 Notation and Standard Results. The navigation error
dynamics and navigation disturbances are modeled by a
stochastic linear vector differential equation.

x=F(tlx + u (3-1)

where X 1s the state vector, comprised of various navigation
errors, F 1s the system fundamental matrix, and u 1s a white
noise vector representing the navigation disturbances. The
power spectral density matrix N of the white noise 1is

Efu(ty) u ()] = N(t)) 8t —t,) (3-2)

where § 1s the Dirac delta function. The superscript T
indicates transpose. The state x at one instant of time may
be expressed 1in terms of the state at a previous instant as
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X411 T cI)J. % + Y (3-3)

where @, 1s called the state transition matrix and wi 1s a
random vector., The initial state x5 and the sequence of

random vectors w, have the following statistics

E(x,) = X,
E(w,) =0
-x %)% =p (3-4)
E [(§0 50)(50 50) 1 = 0 -
T —
E(Wlﬁg) - Ql 613

where §,., 1s the Xronecker delta (1 1f 1 = j, 0 otherwise).
The stat& transition matrix ¢ for each interval may be
computed as the solution to

¢(t,t) = F(t) olt,t ) (3-5)
subject to the initial condition
@(tl,tl) = I {3-6)

The covariance Q of the random vector w may be computed as
the solution to

Qt,t) = F(t) @ (£,t) + QT (£, &) F (t) + N(£) (3-7)

Subject to the inatial condition

Qlt,,t) = 0 (3-8)
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Each scalar measurement z, may be expressed as a linear
combination of the elements of the state wvector plus nolse

- wT -
2, = El x * Vi (3-9)

where the measurement noise v, has the following statistics

E(vl) = 0

E(vlvj) =x, 613 (3-10)
E(wlv]) = 0

E(xg=%y)v, = 0

3.1.2 Filter Algoraithm Selected. Given the dynamic system
and measurements described above, the optimal estimate of
the state may be computed in real time as

XS R (3-11)
- + T _
Pl - Ql-l Pl—l @1—1 + Ql—l (3-12)
=Ph /(hY P h + r ) (3-13)
> 1=1/ ‘= T =a 1
at _ o= _ I oo _
X, =X + 1{11(2l Ei X ) (3-14)
Pt = (I -k hY) PT (T - khD)T + kv k¥ (3-15)
1 —1.—1 1 —1 1 -1 11

This formulation of the Kalman estimator i1s recommended by
Joseph 1n Ref., [3-1], It can be shown that Eg. (3-15) 1s alge-
braically equivalent to

+ o T - _

p =P 51g1 P (3-16)
provided k; 1s the optimal gain vector as computed by Egq. (3-13).
This shorter formula has “often been recommended in the literature,
including Kalman's fundamental paper Ref. [3-2]. Its principal
attraction i1s it requires far less computation than does Eqg.
(3-15). Joseph points out, however, that the shorter formula
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has a serious practical problem. He considers the possibility
that the calculated gains are in error by dk. Then, assuming
perfect precision in computing Eg. (3-16), the computed
covariance matrix Pt will be incorrect by an amount

sp7 = - sk n' P (3-17)

In this unbalanced formulation, a first-order error in the
vector k produces a first-order error in the matrix P¥.
Such an error may produce a meaningless non-positive
covariance matrix.

With the Joseph formulation, on the other hand, an error in
the gain vector 8k can be shown to produce zero first-order
error i1n the matrix P, the actual error being only of second
order:

+

§p7 = sk(T P"h + r)sk’ (3-18)

Note the error introduced is positive; 1t cannot produce a
non-positive covariance matrix.

Other formulations for the filter have been developed
to overcome the numerical difficulties of the original Kalman
formulation. A square-root formulation was developed by
Potter, and 1s presented in Problem 9.11 of Ref. [3-3]. The
Potter square-root formulation can be used 1f the noise
driving the process state 1s negligible. This form was used
in the onboard space navigation filters in Apollo. Schmidt
has recently extended the square-root formulation to include
process noise [3-4]. Schmidt suggests the two principal
advantages of his formulation are- (1) the covariance matrix
18 guaranteed to be non-negative; (2) i1t may be possible to
find suitable scaling for fixed point arithmetic, because
the square root formulation has a much smaller numerical
range. A survey of current square-root filtering techniques
may appear shortly in the literature. [3-5]

The Joseph formulation of the Kalman filter has been
utilized in the present landing navigation effort,

3.1.3 Approximate Computation of State Transition Matrix.
The state transition matrix is the solution to the differential
equation -
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d(t,t,) = F(t)@(trt ) (3-5)
0 0
repeat
subject to the initial condition
@ (t,,t,) = I (3-6)
0'70
repeat

For a sufficiently small At, the integral of Eg. (3-5) may
be expressed as

8t ,ty) = I + Fltg)at (3-19)
®(ty,ty) = [T+ F(tl)At][I + F(t))At] (3-20)
n
et ,ty) = | [T+ Flg, _;)At] (3-21)
n
@(tn,to) =TI + 1§l F(tl_l)At + (higher order

terms) (3-22)

If the interval from t3 to t, 1s T, then At 1is T/n. This
gives the following expression for the state transition
matrix {neglecting the higher order terms)

@(t0 + T,to) = I + Fang (3-23)
where
1 0
Favg =1 1E1F () (3-24)

Eg. (3-23) 1s used to compute the state transition matrix,
which 1s required for filter updates by Egs. (3-11) and

(3-12). The time step T in the landing navigation filter

will be of the order 10 sec or less. Neglecting the higher
order terms should be satisfactory because in the exrror

state formulation the state variables each vary slowly (App. A).

Most elements of the fundamental matrix F vary slowly. .
For these elements, the value of F at the end of the interval
1s used in place of Fgy,. A few of the elements of F will
be shown to be functlong of the wvehicle acceleration ox
velocity. These elements can vary rapidly. In these cases
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Faygl 1S computed by integration of the time varying ¥ element
in garallel with the high frequency inertial navigation
equations.

3.1.4 Approxaimate Computation of Noise Covariance Matrix.
The covariance matrix Q of the random vector w is the solu-
tion to the differential equation

Qt,t,) = F(£)Qt,tg) + Q7 (t,t)FT (£) + N(t) (3-7)
repeat

subject to the initial condition

Qlt,, ty) =0 (3-8)
0 0 repeat

Again using the fact that the error variables are all slowly
varying, an approximate expression for Q can be used, namely

Q(t0 + T, to) = N(tO)T (3~25)

For certain elements of the noise covariance matrix, one

can obtain a suitable formula for the corresponding element
of the noise density matrix N. In most cases, however, 1t
1s easier to obtain directly an expression for the error
growth Q, rather than an expression for the fictitious white
noise density N,

3.1.5 An Advantage of the Discrete Formulation. The Kalman
filter formulation selected 1s a discrete formulation which
Jjumps from one measurement time to the next in a single step.
An alternate formulation i1s a continuous formulation which
involves the integration of a differential eguation governing
the propagation of the state error covariance matrix. Inte-
gration of a matrix differential equation 1s often difficult
and problems of negative diagonal terms can arise.

The discrete formulation also has matrix differential
equations, namely Egs. (3-5) and (3~7). However, integrating
these equations was avoided by using the approximate solu-
tions Eqgs. (3-23) and (3-25). The question araises, "Can
these approximations cause numerical difficulties?" A -
distinct advantage of the discrete formulation i1s that the
answer 1s "No". Consider Eq. (3-12), which i1s of the form,
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111
M = 3P® + Q (3-26)

Now Q as computed by Egq. (3-25) 1s clearly non-negative,
since the noise density matrix N 1s non-negative. Assume
that P, which i1s the result of previous calculations, is
non-negative. If the matrix @ as computed by Eg. (3-23)
158 grossly in error, can M be negative? Let v be an
arbitrary vector. -

v [eP0T + Qlv

<
Z
i

(3-27)

T

vi®

<
=
<
I

¢ PleTv] + v Qv

Since P and Q are non-negative, 1t 1s proven that for
arbitrary ¢ and v

T
Yy My >0 (3-28)

That 1s, M 1s non-negative.

3.2 gtate Variables: Assumed Dynamics and Disturbances

3.2.1 State Variables Chosen for Filter Synthesis. The state
variables to be estimated by the Kalman filter are presented
in Table 3-1. The first three state variables are the errors
1n the inertial-navigation-system indication of vehicle
position. The next three state variables are the errors in
the inertial-navigation-system indication of vehicle velocaty.

The gyro-stabilized platform will be misaligned due
to initial alignment errors plus the gyro drift during the
entry. Including the platform misalignments as state
variasbles enables the Kalman filter to realign the platform.
At speeds small compared with orbital velocity, the vehicle
must support itself with a vertical specific force (lift)
equal, on the average, to the acceleration of gravaity. If )
the platform is tipped about one of the horizontal axes,
the steady vertical specific force is improperly measured as
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Variable

Sign Convention

xl Exrror in
X, Error in
x3 Error in
X, Exror in
Xg Error in
x6 Erroxr in
x7 Platform
axis
X8 Platform
axis
x9 Platform
X Vertical
10 erroxr
xll Altimeter error

east position

north position

altitude

east velocity

north wvelocity

altitude rate

tip about east

ti1p about north

azimuth error

acceleration

— — —

Positive

1f indicated position

1s east of actual.

Positive
18 north

Positive

1f indicated position
of actual.

1f INS indicated alta-

tude 1s above actual.

Positive
velocity

Positive
velocity

Positive
velocity

Positive
positive

Positive
positive

Positive
positive

Posaitaive
positive

Positaive

1f indicated east
exceeds actual.

1f indicated north
exceeds actual.

1f indicated up
exceeds actual.

1f platform is rotated
about the east axais.

1f platform 1s rotated
about the north axis.

1f platform 1s rotated
about the up axis.

1f 1t induces a
altitude~rate error.

1f measured altitude

exceeds actual.

TABLE 3-1 STATE VARIABLES ESTIMATED BY THE KALMAN FILTER
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having a horizontal component. The horizontal acceleration
error integrates into a velocity and position error. The
position error 1s discovered by means of the rad:io distance
measurements. The correlation in the covariance matrix,
between the platform tip and the horizontal position error,
provides the connection whereby the platform misalignment
can be estimated and corrected.

Similarly, horizontal specific force, such as in a turn,
can provide an input for inferring the azimuth error. The
azimuth error has also been included as a state variable to
permit this in-flight dynamic alignment, whenever possible.

In general, the azimuth accuracy achieved will be less than

the level accuracy, because the maneuvering changes—-in-velocity
are small compared with the integral of the persistent vertical
specific force.

The specific force measured by the vertical accelerometer
1s in error because of the vertical accelerometer bias and
scale factor error. In addition, the gravaitational model
utilized by the inertial navigation equations will be slightly
1n error due to gravitational anomalies. State variable X190
15 the combined vertical accelerometer and magnitude of
gravity error. The estimation and correction of this error
can reduce the rate at which a good altitude-rate indication
would otherwise deteriorate.

Similar state variables are not necessary to account for
horizontal acceleration errors. The effect of horizontal
acceleration error - due to horizontal accelerometer bias,
accelerometer input axis misalignment, or deflection of gravity -
1s similar to the effect of a platform tip. Therefore, the
platform tip state variables can successfully absorb the
additional errors.

Barometric altitude, derived from the air data sensors,
could provide an alternate source of altitude measurement.
The last state variable is the error in the altimeter-indicated
altitude. If altimeter measurements are not used, this state
variable can be eliminated.

3.2.2 Assumed Stochastic Process. Methods for deriving the
linearized dynamic equations governing the first nine system
state variables are presented in standard texts on inertial
navigation systems, such as Refs. [3-6] and [3-7]. In the
system of equations presented here, only the significant
coefficients are included. Weak coupling terms, such as
give rise to 24-hour modes in a pure 1inertial system, have
been deleted. Coriolis error terms have also been deleted;
because 1f the system 1is operating within the anticipated
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accuracies, the effect of these terms 1s small. The reason
for deleting as many terms as possible, of course, 1s to
minimize the arithmetic operations required in the Kalman
filter.

Pogition Errors. The error in east position xy, error
1n north position xp, and error in altitude x3 are governed

by
x| = %, (3-29)
x, = X (3-30)
Xy = % (3-31)

Velocity Errors. The error in east velocity X4, error
in north wvelocity Xp s and error in altitude rate xg are
governed by

x, = —(g/R)x1 - a,Xg + a,¥q + u, (3-32)
Xy = —(g/R)x2 +a,x; - ax, + ug (3-33)
Xe = 2(g/R)x3 - oA Xs + a ¥g + %10 + u, (3-34)

where g 1s the acceleration of gravity; R is the radius of
the earth; ag, ap, and a, are the time varying components

of specific force measured by the inertial navigation system;
and uyg4, Ug, u. are the white noise disturbances representing
other acceleration errors.

Provided the vehicle speed is much lower than orbital
velocity, a constant value for g/R may be used in the coeffi-
cients. These g/R terms give rise to the Schuler oscillations
in the east and north errors plus the familiar instability
in the altitude errors.

The terms that are products of vehicle specific force
times platform misalignments are the acceleration errors that
permit inflight alignment.
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Note horizontal accelerometer biases, horizontal
accelerometer input axis misalignments (toward up or down),
and the deflection of gravity do not appear explicitly.
Their effect 1s absorbed into the definition of level
(x7 = 0, xg = 0).

The white noise variables ugq, us, ug must account for
several other sources of measured acceleration error. During
a turn, the scale factor error and input axis misalignments
of the horizontal accelerometers produce horizontal accelera-
tion error. The input axis misalignment of the vertical
accelerometer causes the same turn to produce a vertical
acceleration error. Developing an adequate white noise repre-
sentation for such physical effects 1s not discussed in the
literature of Kalman filter theory or in the literature of
alded-inertial gystems. We have developed a practical
methodology for approaching such modeling problems.

It 1s not easy to assign meaningful values to the elements
0of the power spectral density matrix N of the white noise.
Fortunately, the discrete formulation of the Kalman filter
does not require N. Rather, each cycle a matrix Q must be
added to the estimation-error covariance matrix, Q must
represent the growth in covariance from the last measurement
time to the present measurement time. It 1s easier to compute
directly meaningful wvalues for elements of the Q matrax.

Consider that during a maneuver, such as a 180° turn,
the vehicle has experienced horizontal specific forces
ag (t) and a,(t), the integrals of which are Avg and Avy .
The change ?n east-velocity error due to the total total
maneuver 1S

Ax4 = Av e + Av e (3-35)

etotal ASF ntotal Ab

where epgy 1s the east-accelerometer scale factor error and
epg 1s the east-accelerometer input axis misalignment toward
north, The mean value of this change in velocity error is
zero (the mean 1s computed over an ensemble of platforms
having random instrument errors).

E[Ax4] =0 (3-36)

The mean squared value, however, 1s not zero.
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2 2

e)
total B5F Diotal

+ Av 2 52 (3-37)

2. _
E[Ax4] = Awv 20

where dagw 1s “he l-sigma value of the accelerometer scale
factor error, and oag 1s the l-sigma value of the accelerometer
input axis misalignment,

One must design an expression for the growth Qg4 1in
east-velocity estimation-error covariance for each Kalman
cycle such that the total of the Q's added during the maneuver
reasonably approximates the total error introduced.

2 2 2 2
) 0,, = AV o + Av g {3-38)
_ 44, ©total ASF Niotal Af
1=1
The expression we have selected 1s
Quq = 18v_| v o2gn + |8v] v oF (3-39)
44 e ASF Af

where |Avg| and [Av,| are the magnitudes of the actual Av's
experienced during the last Kalman cycle (from the previous
measurement to the present measurement), and v 1s the present
vehicle ground speed. If the vehicle i1s undergoing a 180°
turn, the application of Eg. (3-39) each Kalman cycle will
yield a reasonable total result.

An alternate expression has been considered, namely

2 2 2
+ Avn 's)

A8 (3-40}

_ 2

This expression gives the correct value for the growth in

the error covariance 1f the maneuver was started and was
completed during the present Kalman interval (compare with

Eg. (3-37)). However, this expression fails to yield the
desired result 1n a prolonged turn. Because the sum of the
squares of the individual Av's is not as large as the sguare
of the total Av, the model for the error growth underestimates
the actual error growth. It 1s dangerous to allow the
covariance matrix to be smaller than the actual level of the i,
errors, as the future measurements will fall(to recelive
adequate weighting. Therefore, we have selected the more
conservative expression, Eg. (3-39).
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For the growth in north-velocity error covariance, a
simrlar expression 1.s used.

e+ lav | v ol (3-41)

_ 2
Q5 = [av | v o A0

AS

The growth in the altitude-rate error covariance is
represented by

2 2

— 2 d—
Qce = 2|avy  |vI203g +(o + o5l (3-42)

apIas’ Y

where |Avh0r| 1s the magnitude of the horizontal change in
velocity, 0apiasg 1s the l-sigma value of an accelerometer
bias, and o§ 1s the l-sigma angular deflection of gravity from
the assumed vertical. The platform 1s considered "level"

when in unaccelerated flaght the horizontal accelerometers
each indicate zero specific forece. The block on which the
instruments are mounted is then actually not level due to
horizontal accelerometer input axis misalignwent, horizontal
accelerometer bias, and the deflection of grawvity. The
vertical accelerometer is therefore, not vertical because

the bleck on which 1t i1s mounted 1s not vertical. Furthermore,
the input axis of the vertical accelerometer 1s misaligned
from the block, which accounts for the factor of two weighting
the input-axis-misalignment variance in Eg. (3-42).

The effect of altitude-rate changes has been neglected.
Platform tips and azimuth error. The platform tip

about east x7, tip about north xg, and azimuth error xg are
governed hy

Xy = - (1/R)x5 - W, X T (me/R)x3 + u. (3-43)
Xg = (l/R)x4 + W, Xq = (mn/R)x3 + ug (3-44)
: 2

xg = (tan L/R)x4 -0, Xg t 0 Xy - (ve tan L/R )x3 + u,

(3~45)

where L 1s latitude, vg 1s the easterly ground speed, and Wg
and w, are the computed east and north components of the
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inertial angular velocity of the local vertical coordinate
system. In an inertial navigation system that attempts to
keep the stable member level, wg and wp represent the torguing
commands to the east and north gyros. In terms of estimated
ground speed, thasse are

=
il

- vn/R (3-46)

i

(1]

n ve/R +w  cos L (3-47)

where w;o 1s inertial angular velocity of the earth. It is
assumed that inertial navigation eguations are implementing

a wander-azimuth formulation, in which the azimuth gyro is
not toxqued. Therefore, no terms proportional to an w,
appear 1n Egs. (3-43) and (3-44). 1In Eg. (3-43), the term
-y X, provides the coupling between azimuth error and plat-
form %1p about east; this 1s the coupling that 1s utilized
in conventional gyrocompassing. Including this term, plus

a similar term W, X9 in Eqg. (3-44), enables the Kalman filter
to perform in-flight gyrocompassing. The azamuth error
causes platform tips which are integrated into velocity then
position errors. Comparison with the radio distance measure-
ments determines the position error. The correlation in the
covariance matrix permits tracing part of this position error
back to the azimuth error.

The variables uy, ug, ug are the white noise disturbances
representing other sources of coordinate-system angular-
velocity error. The principal errors are due to bias gyro-
draft rate, acceleration-sensitive gyro drift, gyro torquer
scale-factor error (1f the east and north gyros are being
torgqued to maintain level), and the rate-of-change of the
deflection of gravity. The gravaty effect must be included
because we are defining the tips x3 and xg with respect to
the fluctuating local direction of gravity, and not with
respect to the normal to the reference ellipsoaid.

One certainly must stress his imagination to model
bias gyro-drift rate as a white noise. However, this is
necessary, 1f one 1s to avoid adding additional bias state
variables to the Kalman filter design. Since the arithmetic
required increases as the cube of the dimension of the state
space, one must make every “reasonable effort to avoid
introducing non-critical state variables.

If gyro drift u(t) were a white noise, the change in
platform tip Ax due to this disturbance would be

~4 4~
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t
Ax = % u(t) 4t (3-48)
1]

The mean value would be zero, since the mean of white noise
1S zZero.

E[Ax] = 0 (3-49)

However, the mean squared value is not zero. It can be
shown the mean squared value grows linearly with time

E[Ax(£)%] = N t (3-50)

where N 1s the power spectral density of the white noase.

This first integral of white noise 1is called a random walk

or Brownian motion. One should choose the value for the
assumed density N so that the total increase in covariance,
added during landing navigation, corresponds to the total
anticipated integral of bias gyro drift rate. If Ty 1s the
assumed matching interval (such as Tg = 600 sec), one reguires

2

NT TB) (3-51)

B = (IgpIas

2 T {3-52)

N = 0upras Tn

where OgBIag 1S the l-sigma value of the gyro bias-drift
rate. The growth Q in the platform-misalignment covariance
during a single Xalman cycle 1s then

_ 2 -
Q = At Tg Ogpras (3-53)

The steady vertical specific force (of the lift opposing
gravity) introduces an additional bias gyro-drift rate for
the azimuth gyro due to the acceleration sensitive drift.

The total gyro drift rate variance 1s

2 2 2 2

°GB, = %GBIAs T ®apIa ¢ (3-54)
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where Ogprag 1S the l-sigma value of the g-insensitive draift
rate and Opapya 1s the l-sigma value of the acceleration
sensitive drift coefficient due to specific force along the
input axis.

In this study we have assumed that the east and north
gyros are in fact a single two-degree-of-freedom gyro with
spin axis vertical. The steady vertical specific force is
therefore assumed to cause drift rates in the east and north
directions whose variances are

2 _ 2 _ 2 r o2 2

“GBe T GBpy cBias * ®apsra 9 (3-55)

where oapsra 18 the l-sigma value of the acceleration sensi-
tive drift coefficient due to specific force along the spin
reference axis.

We neglect the effect of variations in the altitude
rate.

Horizontal accelerations also induce acceleration sensi-
tive drift. Again, 1f we assume that the typical maneuver
Av 1s that of a 180° turn, appropriate expressions for the
growth i1n covariance during each Kalman cycle are

= 2 -
Q77a = |av |V oxpra (3-56)
Q = |Av_|v o2 (3-57)
88a n ADIA
0us = Ity |v o2 (3-58)
99a n ADSRA

The axaimuth gyro 1s assumed to have 1ts spin-reference axis
pointed north.

If the platform 1s torgqued to keep 1t level, the gyro
torquer scale-factor errors introduce tip-rate errors. For
steady flight velocity, the torquing rates are constant and the
tip~rate error 1s a bias. One can model the statistics of
this error in the same manner as the bias gyro-drift rate.
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The same time scale Ty can be used to match the statistics
with the anticipated tilt error to be introduced. If the
platform has been torgued through angles A48, and A8, during
the last Kalman interval, i1t i1s assumed that during the land-
ing navigation period Tp the platform will be torgued through
a total angle of

= JAB2 2 -
Aetotal = (TB/At) Aee + Aen (3-59)

The appropriate expressions for the growth in tilt covariances
during a Kalman cycle are

2

Q77T = [88,] A8, i1 esr (3-60)
0., = |28 | as o2 (3-61)
88T n total “GSF

where Oegy 1s the l-sigma value of the gyro torguer scale-~
factor error.

In a previous Kalman filter design for a radio-aided
inertial system [3-8], the east and north deflections of gravity
were included explicitly as state variables. It was shown
that an adequate stochastic model for each component of
gravity deflection is of the form

§ = - We é + Us {(3-62)

The power spectral density N of the white noise ug 18

- 2 -
N = 205 0 (3~63)

where og 1s the l-sigma amplitude of the deflection of gravaity.,
The bandwidth wgz of the random process, given by Eg. (3-62},
1s made a function of the vehicle present ground speed.

wy = v/dg (3-64)

where dG 1s the gravity correlation distance. Different
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values for both og and d§ are appropriate for the easterly
and northerly deflections.,

It the present landing navigation filter design, the
gravity deflections have been deleted as separate state
variables. The effect of gravity deflection has been absorbed
into the definaition of the tilt variables x3 and xg. A shift
in the deflection of gravity becomes a system disturbance.

Its effect must be included 1n the statistics of the white
noise disturbances u7 and ug.

Assuming a constant bandwidth Wy during a moderate time
interval, the solution to Eg. (3-62) is

—wat t —wa(t—t)
S({t) = §(0)e + S e u(t)dr (3-65)
0
The change in deflection i1s
—wat —ma(t—r)
AS = §(0) [e -~ 11 + e u(t}drt (3-66)
0

The mean value of the change 1s zero, since both §{(0) and
u({r) have zerc means.

E[A8] = 0O (3-67)

The mean squared value of the change can be shown to be

-w.t
E[As%] = 2 02[1 - e ) (3-68)
For mat small compared with unity, this may be approximated
by
E[A8%] = 2 02 u, t (3-69)
or
2. _ 2
E[AS"] = 2(v/d6)c6 t (3~70)
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Appropriate expressions for the growth in tilt covariances
during a Kalman cycle are

_ 2
Q776 = 2(v/d6n) Osn At (3-71)
- 2 _
Q886 = 2(v/d6e) Use At (3-72)

Vertical acceleration error. The computed vertical
acceleration 1s 1n error because of accelerometer bias,
accelerometer scale factor error, and error in the onboard
computed magnitude of gravity. State variable xjg 1s this
acceleration error. At the beginning of landing navigation
the inatial variance of this error is

2 2 2 2

P = + Opap 9 + ng

10,10 - YaBIAS (3-73)

where o4z 1s the l-sigma value of the gravity anomaly.

Eg. (3—%3) assumes that the vehicle speed 1s already small
compared with orbital velocity so that l-g of specific force
1s being experienced.

It 1s assumed that the zero-g accelerometer bias plus
the effect of accelerometer scale factor error contribute a
steady bias during landing navigation. The effect of changes
1in altitude rate 1s neglected. The changes in local gravity
anomaly, however, do cause shifts in the vertical acceleration
error. This 1is modeled as

X = - 0y ¥ * U (3-74)
where
Ugy = v/dgz (3~-75)
The power spectral density N of the white noise u,, 18
N=2un_ o (3-76)
gz gz -

The expression for the growth i1n vertical-acceleration-error
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covariance during a Kalman cycle ais

2
= 2(v/a o, At (3-77)

Q10,10 gz

Altimeter error. There are many diverse sources of
barometric altimeter error. The most significant sources of
error were discussed in Section 2.3. These are:

+ Error due to horizontal gradient of pressure.
- Error due to non-standard temperature.
+ Static pressure measurement error.
* Instrument errors.
In the Kalman filter, a first-order random process 1s used

to model the first effect (the geographic pattern of "highs
and lows").

+ 1 (3-78)

W

11 © T Ya1t *11 11

where

w (3-79)

alt _ V/da].t

The power spectral density N of the white noise uj;;, support-
ing the first effect, 1s

N=2uw g {3-80)

The non~-standard—~temperature error and the static-pressure-
measurement error contribute a shift in altimeter error during
landing navigation, which can be modeled as

- - 2 _ 2 -
Aeh = Ctemp (h ho) + CSP(V vo) (3-81)
The mean value of the shift i1is zero, since the error coeffi-
cients Ctemp and CSP have zero means.
-50-

INTERMETRICS INCORPORATED - 380 GREEN STREET - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840



E[Aeh] = 0 (3-82)

The mean-sguared value of the shift is

2 2

- 2
E[Aeh] - Utem.p

sp

2

(h~h0)2 + 6t (v -vg)2 (3-83)

where Otemp and Ogp are the l-sigma values of the error
coefficients.

An appropriate expression for the growth i1n altimeter-
error covariance during a Kalman cyvcle 1is

2

2
Utemp

+ ]A(v2)|v§ Osp

_ 2
Q11,11 = 8€(2v/d )05, + |an[hg

(3-84)

where hg and vy are the starting altitude and yelocity of the
landing navigation period; and At, Ah, and A(v?) are the
changes 1n time, altitude, and squared velocity during the
last Kalman cycle.

The last source of altimeter error - the instrument
error - 18 modeled as an additive noise, uncorrelated from
measurement to measurement.

3.2.3 Transition Matrix and Noise Covariance Matrix. In
Subsection 3.1.3 1t was shown that most elements of the

state transition matrix for each Kalman cycle may be computed
sufficiently accurately using

& = I +F T {3-85)

where I is the identaity matrix, F is the current fundamental
matrix, and T 1s the length of the current Kalman time step.
The exceptions noted were those elements of the state transi-
tion matrix for which the corresponding element of the funda-
mental matrix varied significantly during the Kalman cycle.
In these cases the appropriate approximate expression 1S

w0
i
H

+ Favg T (3-86)
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where Fayg T 1s computed by integration of the time-varying
F element”in parallel wath the high-frequency inertial
navigation equations.

The differential equations governing the velocity errors -
Egs. (3-32), (3-33), and (3-34) - each have components of the
time-varying specific force as coefficients. Thus, a typical
element in the fundamental matrix is

F4’9(t) = an(t) (3~-87)

The corresponding element of the state transition matrix is
computed as

n
@4’9 = E Avn = Av (3—~88)

That 1s, the element i1s simply the accumulated Av in the
north direction during the time interval of the present Kalman
transition.

The differential equations governing the platform tips
and azimuth error - Eqgs. (3-43), (3-44), and (3-45), each
have the gyro torguing commands e and w, as coefficients.
A typical element in the fundamental matrix is

F8,9(t) = me(t} (3-89)

The corresponding element of the state transition matrix ais
computed as

o = ) Ao, = 48 (3-90)

That 1s, the element 1s simply the total anagle change commanded
about the east axis durang the time interval of the present
Kalman transition.

The non-zero elements of the state transition matrix are
presented in Table 3.2.
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2, =1, T 4= T
5 5 = L ¢, 5 =T
2y 3= 1, ®3,6 = T
®4' =1, @4'1 = - (g/R)T
@4,8 = —- Av
®4'9 = Av
®5'5 =1, ¢5,2 = - (g/R)T
@5'7 = sz
@5'9 = - Ave
6,6 = 1s ¢ 3 = 2(g/R)T
¢6,7 = = Ay
®6,8 = Avy
%6,10 = T
o, 4 = 1, @ 5 == (I/R)T
7,9 = “B8,
@7’3 = - Aee/R
bg g = 1, % 4 = (1/R)T
2g o = A6
¢8,3 = - Aen/R
9,9 = 1 %9,4 = (tan L/RIT
<I,9.'8 = —Aee
@9;7 - Aen 9
%,3 = = (v, tan L/R)T
zlo,lo = 1- (v/d )T
11,11 = 1 - (v/dalt)T

TABLE 3-2 NON-ZERO ELEMENTS OF THE STATE TRANSITION
MATRIX
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2 2
Q4,4 = |Ave| V Opgp T ]Avh| V Ong .
2 2
Q5,5 = [4v| v oagp + |8V ] v o,
~ 2 2 | 2 _
Q6,6 a 2lAvhorlv[che+ (UABIAS/g) + UGe]

_ 2 2 2 2
Q; 9 = 0t Tp{0gprag *9ppgra 9 ) F |avl v 9apa

2 2
+ IAee| Aetotal UGSF + At(zv/dén)gﬁn
_ 2 2 2 2
Qg g = At Tp(Ogpras * Ippgra 90 * 14vu| v 0apr
+ |ae_| ae o2 + At(2v/d, )02
n total “GSPF e’ " fe
_ 2 2 2 2
Qg g = At Tp(Ogpyag + Iapya 9 ) + lav, | v 93psra
0 = At(2v/d__)o>
10,10 gz’ “gz
_ 2 5 2.1.2 2
017,11 = At(2v/d_1, )05, *+ |Ah|hs Oremp A (v )[vs Osp

TABLE 3-3. NON-ZERO ELEMENTS OF THE NOISE COVARIANCE
MATRIX
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TABLE 3-~4 DATA USED IN THE STATE TRANSITION AND NOISE

MATRICES

ASF
.Y
CABIAS
CGBIAS

CanTa
OADSRA

OusrE

alt
alt

0temp

2@ T

acceleration of gravity
earth radius

accelerometer scale factor error
accelerometer input axis misalignment
accelerometer bias

gyro bias draift rate

gyro accel. sensitive drift {input
axis)

gyro accl. sensitive drift
axis)

(spain

gyrc torquer scale factor error
gravity deflection north

deflection correlation distance north
gravity deflection east

deflection correlation distance east
gravity anomaly (magnitude error)
anomaly correlation distance
variation in altitude of constant

pressure surface

correlation distance of constant
pressure surface

non-standard temperature altim. error
static pressure altim. error

assumed starting altitude

assumed starting speed

assumed navigation duration

9.86 m/s?
6380 km

1 x 1074

15 arc sec

5 x ZLO—4 m/s2

.03°/hr

.10°/hr/g

.03°/hr/g

2 x 1074

5

2.6 x 10 ° rad

44 km
-5
3.3 x 10 rad

30 km

4 2

4 x 107" m/s

146 km

170 m

~

500 km
.03

5 x 10 m/(m/s)
20 km

300 m/s

600 sec
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The non-zero elements of the nolse covariance matrix Q
are summarized in Table 3-3,

The numerical values assumed for the various constants
in the state transition matrix and in the noise covariance
matrix are presented in Table 3~4. The data on accelerometer
and gyro errors are taken from Ref. [3-9]. The data on gravity
deflections, gravity anomaly, and altimeter errors are taken

from Ref. [3-8].

3.3 Measurement Incorporation Equations

Three types of measurements may be processed by the
landing navigation Kalman filter. These are range-difference
measurements, delta-range—-difference measurements, and alti-
tude-difference measurements (if required).

3.3.1 Range-Difference Measurement. At the same instant
that the range rp to transponder i1 1s measured, the vehicle
longitude, latitude, and altitude indicated by inertial
navigation equations are sampled and held. A calculated
range to the transponder is computed: Given the indicated
vehicle position (A, L, h) and the transponder position (A,
Ly, h;) in geocentric coordinates, the earth central angle 8
between the two positions 1is

5 B L-L, A=A
sin 3 = sin > + cos L cos L_ sin
1 2
(3-91)
From the law of cosines, the calculated range Te 1S
£ = [(p=p.)? + dpp. san? 211/2 (3-92)
o PP, PR, )

where p 1s earth radius plus altitude. The range-difference
measurement 1s the calculated range minus the measured range.

(3-93)

It can be shown that for errors in indicated position
small compared with the actual range, the range-difference
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measurement may be expressed as a linear combination of
the navigation-error state vector elements, namely

z.=h x+tv (3-94)

where v, is the negative of the error in the measured range,
and the vector Er 1s all zeros except for

hrl = by
h =h (3-95)
r n
2
h = b
3 Z

where b_, b,, b, are the components of the unit vector

directed from the 1-th transponder to the aircraft. The vector
h 1s called the measurement gradient wvector, because the
elements of h are each the partial derivative of the measure-

ment z with respect to the corresponding navigation-error
state variable.

The b vector expressed in east-north-up geocentric
coordinates at the vehicle (not at the transponder) may be
calculated in terms of the indicated vehicle position (A, L, h)
and the transponder position (kl, L hl) as

1
bl =Z P, cos Ll 51n(k—ll)
e 1
1 A=A,
bl =2 p1[51n(L—Ll) - 2 sin L cos Ll sin > 1
n 1
(3-96)
b -1 fp- + 2 51n2 El'-]
1, - r, P=Py Py 2

As discussed in Section 2.1, the largest range measurement
errors are contributed by the uncertainty in the radio
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propagation velocity in the atmosphere, possible random errors,
and equapment bias. The range-difference-measurement error
vy contributed by these effects 1s

Ve =&y - T, e £(h) - e - e, (3-97)

where ep, 1s the bias in the a-th transponder, r; 1s the
range from the vehicle to the i-th transponder, e, is the
propagation error at sea level {expressed as a frgctlon of
range), e, 1s the multipath random erroxr, and €4 1S other
random err¥or. The function f(h) expresses the decrease in
propagation error at increasing altitude h.
-h/h
£(h) = (L-e  °)/(h/h)) (3-98)

Note, i1in the limit as h goes to zero, f(h) goes to 1ts maximum
value unity.

The mean value of the error v,. 1s zero, because nr €y e
and e_ each have zero mean (over tﬁe ensemble of transpondgrs
and weather conditions).

E[Vr] = 0 (3-99)

The variance r,. of the error V. 18

r = oi + rf o2 £2m) + qi cos?® ¢ + ci (3-100)

2
P
where Oh, Op:s Op Ccos £, and 0, are the l-sigma values of the trans-
ponder bias, propagation error, multipath random errors and

other random error. The tosine dependence of multipath error

upon the elevation angle & (of the vehicle above the horizon

as seen from the transponder) indicates reduced multipath
error at high elevation angles.

A summary of the range-difference-measurement egquations
is presented in Table 3-5. Given the calculated values of
Zy., by, and ry, the Kalman filter incorporates the measurement
according to Egs. (3-13), (3-14), and (3-15),

A problem i1n filter performance can arise 1f the transponder
bias or propagation effect are the dominant error sources, . ,
rather than the random error. The underlying statistical
assumptions, under whach the Kalman filter is an optimal
estimator, include Eq. (3-1Q) which states (among other
things) that
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Difference measurement

Z_ = Y - r
r calc meas

Measurement gradient vector (non-zero elements)

h. =b
ry e
hrz = bn
h, =5b
ry p

Assumed measurement-error variance

2 2 2 .2 2 2 2
r, = Ub + r Gp £ (h) + cm cos” & + Gr
~h/h

£(h) = (1 - e S)/(h/hs)

cos2 e = [1 - bi]l/2
Data
%% transponder bias 0.3 m
-6
Up propagation error 50 x 10

o multipath random errcr 0.9 m

0 other random error 0.2 m

h_ scale height 6900 m

TABLE 3-5 RANGE~DIFFERENCE MEASUREMENT SUMMARY
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E[v(tl)v(tj)] = 0 for 1 # 3 (3-101)

That 1s, the measurement error 1s uncorrelated with the error
in every other measurement. Transponder bias and propagation
error clearly introduce correlation into the measurements.
The Fformal mathematical solution to this problem 1s to intro-
duce additional state variables associated with the correla-
tions. However, one wishes to keep the dimension of the
state space as small as possible, to minimize the onboard
computation and the memory required. Additional state
variables should be added only 1f a problem is discovered
through simulation and 1f such problem cannot be handled in

a less costly manner.

Successful Kalman filter performance (utilizing
the range~difference measurement equations summarized in
Table 3-5 in conjunction with the standard measurement-
incorporation equations {3-13), (3-14), and (3-15)) depends
on the linearizing assumption that the error in indicated
position 1s small compared with the actual range to the
transponder. If this underlying assumption i1is violated,
nonlinear effects become important and the filter performance
deteriorates.

We have designed compensation for the nonlinear elonga-
tion of the measured range. A discussion of the nonlinear
problem and a derivation of the compensation is presented
in Appendix C. The addition of these compensation equations
increases significantly the domain of convergence of the
navigation filter. A summary of the compensation eguations
1s presented in Table 3-6. The on-board-computed covariance
1s assumed to match satisfactorily the actual level of
navigation position error. The mean elongation of the
measured range, due to position uncertainty, 1s computed
and i1s subtracted from the measured range. The variance
assumed for the range-difference measurement is increased to
account for the addition of error by the nonlinear elongation.
The so-modified range—dlfference measurement zr and assumed
measurement error variance ry are then utilized in the
standard measurement-incorporation equations (3-13}, (3-14),
and (3-15).
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Estimated line-of-sight coordinates

)

u

u, unit (QE X T,

VE

Position covariance noxrmal to estimated line-~of-sight

T
P = 1 u
aa -—a rr -—a
N
Pab =4 P By

o
Prp = % Prr By

Eigenvariances of normal covariance
2 2 _ + _
Oor O3 = (P, + Py TH(B,, — Py)

Modified range difference measurement

_ 2 2
Z,. = 2 + (02 + 03)/2rC

Modified assumed measurement error variance

v 4 4 2
r,. = r. + (02 + 03)/2rC

Table 3-6 COMPENSATION FOR NONLINEAR ELONGATION OF
MEASURED RANGE
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3.3.2 Delta-Range-Difference Measurement. The delta-range
circuits of the DME measure the change in range Ary to the

1~-th transponder. The interval At, during which the change

in range 1s measured, i1s under computer control. Counting

of the doppler cycles begins upon computer command at t

and stops upon computer command at to. The end of the counting
interval also i1s the time at which the assocrated range
measurement i1s taken,

At both the beginning tj and end t, of the counting
interval, the computer must sample and hold the vehicle
position (A, L, h) indicated by the inertial navigation equa-
tions. The calculated ranges rc(tj1) and rg(ty) are computed
by means of Egs. (3-91) and (3-92). The calculated change
in range 1is

ArC = rC(tz) - rC(tl) (3-102)

The delta-range-difference measurement i1s the calculated
delta-range minus the measured delta-range

Zpp = ArC - ArM {(3-103)

It can be shown that for errors in indicated position
small compared with the actual range, the delta-range-difference
measurement is comprised of

2y, = BT (E))e, (ty) = B (t)e (b)) + v, (3-104)
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where b 1s the unit vector from the transponder to the
vehicle, ey 1s the vector error in the inertial-indicated
vehicle position, and vp, 1is the negative of the erxror in
the measured delbta range. The error in position at t; may
be expressed in terms of the errors at t, according to

e () = e (t) - e (t,) At (3-105)

where e, 1s the vector error in the inertial-indicated vehicle
velocity The small acceleration error (due to platform
ti1lts, accelerometer biases, scale factor errors misalignments,
etc.) has been neglected. The small rotation of the local-
vertical coordinates has also been neglected. Substituting

Eg. (3-105) into Eg. (3-104) yields

_ T T _
Zpp = Ab7 e (£5) + bt e ()08 + vy (3-106)

where

Ab = b(t,) - b(t)) (3-107)}

From the point of view of the Kalman filter, the delta-
range-difference measurement is considered to take place at
t2, at which time the measurement 1is

(3-108)

where the measurement gradient vector 1is all zeros except

for

h = Ab

Arl e
hAr2 = by

h = ADb

Arg z (3-109)
hAr4 = be(tl)At
hAr = bn(tl)At

5

hArs = bz(tl)At
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The measurement error Var contributed by propagation
error and random error 1is

= - Ar e_ f£(h) - e (3-110)

Var = 1p Ar

where Ar 1s the change in range and ep, 1s the random error.
Note transponder bias drops out of a delta-range measurement.
The mean measurement error 1s 2ero

E[vAr] =0 (3-111)

The wvarliance rAr of the measurement error is

2

— 2 2 2
= (Arl} Gp £f°() + o

Ar (3-112)

Thy

A summary of the delta-range~difference-measurement
equations 1s presented in Table 3-7. Given the calculated
values of Zpy, hpyr and rpy, the Kalman filter incorporates
the measurement according to Egs. (3-13), (3-14), and {3-15).

A point, not often emphasized, 1is that a delta-range
measurement 1s not a simple "range—rate" measurement. Eq.
(3-106) showed that the difference measurement 1s a function
of both wvehicle velocity error and vehicle position error.
While flying over a transponder at low altitude (such as on
final approach), the shift Ab in the transponder-to-vehicle-
direction vector can be substantial. Consider a speed of
150 m/sec, an altitude of 1000 meters and a measurement
interval of 1.0 sec. The shift Ab (i1f the vehicle 1s over
the transponder) is .15, directed forward. If estimated
position 18 in error by 2 meters, forward, then according
to Eq. (3-106) the position error contributes .30 meters
to the delta-range difference measurement. If position error
were 1gnored in the formulation and the data were treated
as "range-rate" data, the .3 meter measurement-difference
{accumulated 1n the 1.0 sec interval) would be interpreted
erroneously as a .3 meter/sec altitude rate error. This might
be intolerable, because the touchdown altitude~rate navigation
accuracy specification 1s 0.05 m/s.

The relative contribution of position error and velocity
error to the difference measurement is not changed by choosing
a different interval size At, because (assuming constant b
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Difference measurement

Ar

Z = Ar -
Ar calc meas

Measurement gradient vector {non-zero elements)

hArl = Abe
hArz - Abn
hAr3 = Abz
Ppr, = PelEp)AE
hAr5 = bn(tl)At
hArG = bz(tl)At

Assumed measurement-error wvarliance

_ 2 2 .2 2
Ty = (AT) 95 £ (h) + Tay
Data
GAr random erxror 0.1 m
op propagation error 50 x 10°°

TARLE 3-7 DELTA~RANGE~DIFFERENCE MEASUREMENT SUMMARY
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during the interval) the coefficients weighting position
error and velocity error in Eg. (3-106) are both proportional
to At. Hence, making At small sti1ll does not permit treating
the data as a simple "range-rate" measurement. A disadvantage
of making At small is that the contribution of position and
velocity error to the difference measurement (the "signal")
becomes small compared with the assumed 0.1 meter random
error (the "noise"}.

Using the formulation proposed here+ the measurement
interval At may be made as large as desired to increase the
measurement "signal-to-noise ratio". Vehicle maneuvering
during the interval introduces no error, because data at the
middle of the interval i1s not used to represent the entire
interval. Rather the exact indicated positions at the
beginning and end of the interval are used. These indicated
positions include, without approximation, the effect of vehicle
acceleration, and ranges calculated based on these indicated
positions include, without approximation, the effect of non-
uniform range rate. A limit to increasing the "signal-to-
noise-ratio" 1s reached when the propagation error dominates
the added measurement error. At a velocity of 200 m/sec
with propagation error of 50 x 10-6, 1f At 1s 10 sec the
error introduced 1s .l meter - which 1s comparable to the
assumed random error. For larger At the wvehicle position
error, the vehicle velocity error, and the propagation error
all have the same relative contribution to the difference
measurement.

To take advantage of the "signal-to-noise" improve-
ment associated with a larger delta-range measurement
interval At, in the present Kalman filter design we have
selected the maximum interval At that 1s compatible with
the seguential-measurement organization of the CR-100 DME
subsystem. That 1s, upon completion of a range and delta-
range measurement to one transponder, the computer immediately
initiates the interrogation of a second transponder. As soon
as the carrier-loop lockup 1s established, the computer
commands the start of the delta-range measurement. A
maximum of 0.2 sec 1s required from the end of the measurements
with the first transponder to the start of the delta-range
measurement with the second transponder. The entire remaining

+An alternate formulation (whereby delta-~range 1s treated

as a range-rate measurement) 1s discussed in Appendix B.
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interval (up to the taime desired for the range measurement
to the second transponder} is utilized to accumulate the
delta-range measurement. That i1s, 1f range measurements
occur every 10 sec, then the delta-range-measurement
interval At 1s about 9.8 sec.

3.3.3 Altitude-Difference Measurement. If an i1ndependent
gsource of altitude information is found necessary, a
possible source 1s the barcometric altitude derived from the
arr-data. The altitude-difference measurement is the
altitude aindicated by the inertial navigation equations
minus the altitude derived from the air data

z, = h - h (3-113)

In terms of the navigation-error state-vector elements,
the difference measurement 1s

7

g = (3-114)

T
n= 8 XV

h

where vy, 18 the short correlation measurement error. The
measurement gradient vector hh 1s all zeros except for

hh3 = 1
{3-115)

hy =-1

1l

The measurement error 1s assumed to have zero mean.
E[vh] = 0 (3-116)

The maximum tolerable wvariance h of the measurement error

18 a parameter to be determined (if independent altitude 1s
required to meet the landing navigation accuracy specification).

A summary of the altitude-difference measurement i1s
presented xn Table 3-8, )
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Difference measurement

Zy = brys T Pair pata

Measurement gradient vector (non-zero elements)
h = 1
h = =]
hiq

Maxaimum tolerable measurement-error wvariance

ry to be determined

Table 3-8 Altitude-Difference Measurement
Summary

-6 8w

INTERMETRICS INCORPORATED - 380 GREEN STREET » CAMBRIDGE, MASSACHUSETTS 02139 + (617) 868-1840



3.3.4 Rectification of Inertial Navigation Errors. The
indications of vehicle position and velocity are maintained

by the inertial navigation equations at a higher freguency

than the Kalman-cycle frequency. The inertial-navigation-
equation variables therefore are chosen as the navigation
variables with which to drive the guidance and contrel equatirons
To maintain these variables as best estimates of the wvehicle
position and velocity, 1t is necessary to introduce corrections
in the wvariables as computed by the Kalman filter,

In general, the Kalman filter lags behind the inertial
navigation equations, which are processing the accelerometer
data nearly continuously. At a Kalman measurement time, the
Av's and A8's from the inertial navigation eguations are
incorporated i1nto the transition matrix and noise equations,
the covariance matrix 1s brought-up to the measurement time,
the measurement data (that was taken and stored at the correct
measurement instant) 1s incorporated. All these computations
require time, so the estimate of the navigation errors (based
on all the data including the present measurement
becomes available some delay after the measurement time.

Since the navigation errors are all slowly varying,
very little loss i1in navigation and guidance accuracy will
result 1f the correction of the estimated navigation errors
1s delayed by a full Kalman cycle T. Let Ax be the vector
of navigation variable corrections to be implemented at the
next Kalman measurement instant. In the Kalman filter during
the next computation cycle Eg. (3-~11) 1s modified to be

X + Ax (3-117)
=1
Note, the corrections are the negative of estimated navigation

errors, so the rectification process represented by Eq. (3-117)
drives the estimated errors toward zero.

-69-
INTERMETRICS INCORPORATED - 380 GREEN STREET « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 868-1840



3.4 Landing Navigation Initialization

3.4.1 Concept. During hypersonic entry, the estimate of vehicle
position and velocity is maintained by the inertial navigation
equations, processing the measured specific force from the inertial
measurement unit. Satisfactory estimates of horizontal positaion
and velocity can be maintained throughout entry. Typical horizon-
tal position errors at the end of entry might be of the order of

10 km.

The estimates of altitude and altaitude rate will diverge, 1f
pure 1inertial navigation eguations are used. The vertical
instability can be bounded, however, 1f one derives altitude from
the measured specific force, using suitable stored data for the
vehicle aerodynamics, vehicle weight, and atmospheric density-
altitude relationship. In this manner, the altitude error can
be bounded to the order of 3 km.

After coming-out of the communications black-out (1f any),
and when the transponders located at the terminal area appear over
the radio horizon, the updating of the onboard navigation can
begin. In principle, range measurements can be incorporated
immediately, utilizing the Kalman filter measurement-incorporation
equations. However, problems can arise due to measurement non-
linearities associated with the relatively large position uncertainty
The compensation for the nonlinear elongation of the measured
range, derived 1in Appendix C, extends the domain of convergence
of the navigation filter to the order of a 4 km position error
at 200 km range. (This observation is based on a very limited
number of simulations.) To be confronted with a 10 km initaial
position error creates more severe nonlinearities. And 1f the
vehicle 1s so fortunate as to have the terminal area at the
center of the remaining footpraint (rather than at the far edge),
the ranges to the transponders are reduced, further amplifying
the error-to-range ratio and increasing nonlinearities.

Fortunately, a relatively simple start-up algorithm
exists, which can fix the 1initial wvehicle position utilizing
the DME data alone. The position as indicated by the inertial
navigation i1s not used at all. Hence, a large 1inertial-navigation-
position error (relative to the vehicle/transponder range) 1s
no problem. In addition, an initial covariance of the position
errors can be computed as an explicit function of the posaition-fix
geometry and of the assumed radio-range-measurement errors. This
initial covariance 1s a good match for the actual level of
errors.

Following the initial position fix and covariance initializa-
tion, additional range and delta-range measurements are
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incorporated using the Kalman filter. In this manner the
velocity estimates quickly become updated, completing the initial
capture of the navigation state-vector errors. A functional

flow diagram of the landing navigation 1initialization logic is
presented in Fig. 3-1.

3.4.2 Posgition-Fix Logic. In rapid succession, the range and
delta~-range to three of the terminal area transponders are
measured. The transponders having the widest geographic separa-
ti1ion should be utilized to minimize the geometric dilution of the
ranging accuracy. The measured range-changes associated with

the first and third range measurements are used to estimate the
ranges that would have been measured had simultaneous ranging

at t2 been possaible

rl(tz) = rl(tl) + Arl(tz - tl)/At
r2(t2) = r2(t2) {3-118)

ralt,) = ralty) + Arg(t, - t5)/At

Figure 3-2 1llustrates the start-up geometry. Typical timing
might be 0.4 sec between t; and t; and between ty and t3. The
delta-range~accumulation interval At could be 0.2 sec. Delta-
range divided by At 1s an estimate of the range rate at the
center of the measurement interval. To use this range rate (to
estimate the range at a different time) neglects the range acce-
leration. Suppose the range acceleration (due to vehicle
maneuvering or geometry shift) were a maximum of 10 m/sec2

(1 G). The error in extrapolating rq(ty) to time tjy would be

a maximum of

-:2%-:1(1:2 -t 4 At/2)2 = 1.2 meter (3-119)

The error in extrapolating r3(t3) back to the time t2 would be
smaller

la(t

1 - At/2)% = 0.5 meter (3-120)

- t

3 2
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START

SELECT THE BEST THREE TRANSPONDERS

Y

MEASURE r AND r TO EACH TRANSPONDER

'

CORRECT RANGE MEASUREMENTS
T0 A COMMON TIME

!

CALCULATE A POSITION FIX

!

CORRECT THE INS INDICATED PCSITION

!

INITIALIZE THE ERROR-COVARIANCE MATRIX

!

INCORPORATE ADDITIONAL MEASUREMENTS
(USING THE KALMAN EQUATIONS)
TO ESTIMATE THE VELOCITY AND OTHER ERRORS

RETURN

Fig. 3»1 ILanding Navigation Initralization Logic
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The range acceleration i1s likely to be smaller than the 10 m/sec
assumed here, so the extrapolation errors should be smaller,

The timing intervals assumed are based on a maximum of 0.2 sec
required to establish carrier lock and start a delta-range
measurement, The typical acguisition time i1s less. A shorter
typical acquisition time would further reduce the extrapolation
errors shown 1in Egs. (3-119) and (3-120).

Given the estimated simultaneous ranges ri, rs, and r3,
a navigation fix giving vehicle position at ty can be obtained.
It 18 convenient to convert the transponder-location data into
earth—~centered Greenwich cartesian position vectors. That is,
the position vector for transponder 1 is

P, = P, cOs Ll cos ll
ply = p, cos L:L sin ll {3-121)
P,, = P, 810 L,

where p, 1s earth radius plus transponder altitude, L, 1is trans-
ponder geocentric latitude, and A, is transponder longitude.

The three-simultaneous-range-measurement position f£ix eguations
suggested by Carlson in Ref. [3-8] can now be used. A transponder-
plane coordinate system 1is established with transponder 1 the
origin. Direction u, is chosen perpendicular to the plane
containing the three transponders. Direction u; is along the

line from transponders 1 to 2. Dairection uj completes the ortho-
gonal traiad.

ARQ = By = By APZ = IAEQI (3-122)

Apy = p3 ~ Bpi  Ap3 = [Apsl (3-123)

s =A0p, x Apy; s = s (3-124)

u; = unit [s] (3-125)

u, = umt [Ap,] (3-126)

U3 = 81 ¥ & (3-127)
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The sine and cosine of the (positive) angle between the direction
from transponder 1 to 2 and the direction from transponder 1 to
3 are

s = s/Ap2 Ap3 (3~-128)
Coyz = AEQ . AE3/Ap2 Ap3 (3-129)

The estimated vehicle position Pyg 1S then determined according

to
dy = (r2 - r2)/20p. + Ap./2 (3-130)
2 1 2 Py Py
2 2
d3 = (r:L - r3)/2Ap3 + Ap3/2 (3-131)
2 a2 2,172
d; = (r] - a5 - a%) (3-133)
Pyg = & dju; + dau, + djug + py (3-134)

In general, two positions exist having the same ranges ry, ry,

r3. One position 1s above the plane of the transponders, the

other position 1s the mirror image below the plane of the trans-
ponders. This solution ambiguity is i1ndicated by the plus and minus
sign for the term djuj. The sign of the term should be chosen

to place the estimated vehicle position above the plane of the
transponders. A comparison of the magnitudes of the two possible
geocentric position vectors determines which solution ais farther
from the center of the earth.

A deravation by Carlson of the eqguations for the position
f1x 1s presented in Ref. [3-10].

Having determined the estimated vehicle geocentric position
vector pyr, the corresponding altitude, geocentric latitude,
and longitude may be extracted.

h -r (3-135)

= Pyg E
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L = s:.n_l(pVE /Pyg) {3-136)
Z

A= tan N (poy /Pyg (3-137)

)
v x

The two—argument version of the arctan routine is used to obtain
the proper quadrant.

These values for latitude, longitude, and altitude are
appropriate for the time ty at which the "simultaneous" range
measurements were made available. At the same instant £t the
position of the vehicle indicated by the inertial navigation equa-
tions was noted. The difference between the INS position at tj
and the DME-fix position at tp 15 used to correct the running
INS position indication, as soon as the result of the position
fix calculation becomes available.

3.4.3 Initial Error-~Covariance Matrix., Given the result of the
position fix, the estimated directions 91' 22, b3 from the three
transponders to the vehicle are calculated using Eg. (3-96).
Define a 3x3 B matrix whose rows are the b vectors.

- 7]

(3-138)

Let the errors in the three range measurements form a range-error

vector e,

= e (3-139)
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Let the east, north, and altitude position errors be the
components of the wvehicle position error vector ey

e
a

= e (3-140)

It can be shown that, for the vehicle position errors small
compared with the ranges to the three transponders, the range
errors are related to the resulting position fix errors according
to

= B e (3"“141)

If the three b vectors span the three-dimensional vector space
(that 18, 1f the three b vectors do not all lie i1n a single plane),
the B matrix can be inverted.

= B e {3-142)

Assume the range errors have zero mean, in which case the position-
fix errors also have zero mean. The 3x3 range-error covariance
matrix R and the 3x3 position-fixX error covariance matrix P3X3

are by defainition

= T -
R=CEle. el (3-143)
P, . = Ele, el (3-144)
3x3 = ==X

The covariance matrix P3,3 can be calculated 1in terms of the range-
error covarlance matrix R according to

P = B R B (3~145)
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The error ey in the L &R range measurement 1S as was given in
Eg. (3-97)

e = r e f(h} + e + e + e (3-146)
r, 1 p bl m, r,

where e 1s the sea-level propagation errxor (expressed as a
fractlog of range), ep; is the bias 1n the 1th transponder, e
1s the multipath random error, and ey 1s other random error, 1
The a priori variance assumed for the’1th range measurement
error 1s, as was given in Eg. (3-100)

o .2 2 .2 2 2 2 2

Rll = I GP £f°(h) + Gb + cm cos” & + o {3-147)
The cross—correlation (covariance) of the range-measurement
errors to two different transponders is

- 2 22 -
le =z, r, 0, £° (h) 1 # 3 (3-148)

Note at has been assumed that the same propagation error e
exists throughout the terminal area, such that the range egrors
are correlated.

To summarize the initial position error covariance matrix
P3x3 (associated with the position fix utilizing the three
"simultaneous" range measurements) 1s computed from Egs. (3-138},
(3-147), (3-148), and (3-145).

The matrix P3x3 1s used to initialize the upper-left 3x3 parti-

tion of the full Kalman filter covariance matrix P. Pags P55,
and Pge are initialized with appropriate values for the variances
of the east, north, and up velocity errors after entry. P77,
Pgg, and P are initialized with appropriate values for the
variances 3% the east, north, and azimuth platform misalignment
after entry. Pi10,30 *5 1nitiralized with the variance of the
magnltude—of—gravity and vertical-accelerometer error. If the
barometric altimeter were to be used, Pjj,;1 would be initialized
with the variance of the altimeter error. Values for these
initial diagonal elements of the covariance matrix, used in this
study are
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Pyy = P = P = (10 n/sec) > (3-149)

55 = Fge

Py, = Pgg = Pgg = (1.5 mllaradian)” © (3-150)
P10,10 © ng + UiBIAS t O§SF g” (3-151)
P11,11 ~ %ae * Uiemp ng + Gzp vs (3-152)

The data required for Eg. (3-151) and (3-152) was presented in
Table 3-4.

No attempt has been made to compute the cross-correlation
of the initial errors in state variables 4 through 11. Therefore,
the corresponding off-dragonal elements of the covariance
matrix have been set to zero.

A summary of the covariance matrix initialization i1s presented
in Table 3-9,

Following the initial posgition fix and covariance matrix
initialization, additional range and delta-range measurements
are incorporated using the normal navigation filter equations.
In thais manner the velocity estimates guickly become updated,
completing the initial capture of the navigation position and
velocity errors.
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Geometry Matrix

Assumed range errcor—covariance matrix
=r r G; fz(h)

+ 02 cos2 g + 02)
m r

Table 3-% Covariance Matrix Initialization Summary
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CHAPTER 4

TOTAL SYSTEM DESIGN AND PERFORMANCE

In Chapter 3 we have presented the on-board approach and
landing navigation equations design, including: a Kalman filter
algorithm, the choice of state wvariables, the modeling in the
filter of the various sources of navigation error, the measure-
ment incorporation equations, and the landing navigation initial-
ization logic.

In this chapter we address broader system design guestions
such as: How many transponders are required? Where should the
transponders be located® Is an independent source of altitude
information required to meet the landing navigation accuracy
specification? Do the on-board equations deliver the desired
performance” Does the approach trajectory affect the performance
results? What 1s the effect of measurement rate on performance?
What DME accuracy 1s required? What is the effect of earlier
transponder drop-out just before touchdown? What i1s the effect
of degraded IMU performance?

The praincipal tool, used through this chapter, to help
obtain answers to these design questions, 1s a detailed digartal
simulation of the on-board navigation equations, the vehicle
approach and landing trajectory, the inertial measurement unit,
the distance measuring equipment, and other sources of landing
navigation error.

4.1 Baseline System Performance

4.1.1 Landing Trajectory. The landing trajectory utilized

in the baseline simulation i1s shown in Fig. 4-1 and 4-2. This
landing pattern 1s typical of the approach and landing trajectories
commanded by the Morth approach guidance (Reference [4-1]).

The simulation begins in the terminal area at an altitude
of 6100 meters. The speed 1s 170 m/sec., The vehicle performs a
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right turn circle arriving on final approach 15 km from the end
of the runway. Before the flare, the vehicle speed has gradually
decreased to 130 m/sec. During the prolonged flare maneuver the
vehicle decelerates, arriving over the runway threshold at a
speed of 90 m/sec. After touchdown, the vehicle decelerates at
0.2 g. The simulation ends after the vehicle has almost rolled
to a stop.

4.1.2 Transponder Locations. Three transponders are utilized in
the baseline saimulation. Their locations are also shown in

Fig. 4-1, Two transponders are placed under the final approach
path, transponder 1 being 15 km from the runway threshold and
transponder 2 being 3 km from the runway threshold. The third
transponder 1s located 3 km to the side of the middle of the 3 km
runway. The rationale for this transponder deployment is discussed
in Section 4.3.

4,1.3 Measurement Seguence. The first three range measurements

are used to calculate the initial position fix at t=0. Following
the position f£ix and error-covariance-matrix initaalization,

the Kalman filter equations are activated. At t=2 sec, range

and delta-range measurements with transponder 1 are incorporated.
At t=4 gec, range and delta-range measurements with transponder 2
are incorporated. At t=6 sec range and delta-range measurements

with transponder 3 are i1incorporated. This completes the landing

navigation initialization sequence.

Following initialization, the measurement-incorporation
rate 1s reduced to one pair of range and delta-range measurements
every 10 sec. The transponder sequence 1s simply 1, 2, 3, 1, 2,
3, etc. The effect of other measurement rates on performance
1s presented in Section 4.5.

Clearly, the measurements with transponder 2 during the final
approach have a critical effect on the altitude and altatude-
rate navigation accuracy obtained for touchdown. To ensure
obtaining the best altitude geometry, as transponder 2 1s approached
the normal measurement cycle 1s interrupted. Several pairs
(usually three) of range and delta-range measurements are obtained
with transponder 2. The overflight logic includes a computation
of estimated time~to-go to the point-of-closest-approach.
Thus, one of the measurement pairs 1s timed to occur as close
as possible to the point directly over the transponder.

Following the overflight of transponder 2, the measurement
selection logic, attempts to resume the normal cycle. The simula-
tion of the DME performance assumes that range and delta-range
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measurements cannot be obtained (or cannot be trusted) 1f the
vehicle elevation angle (as seen from the transponder) drops below
1°, If a measurement to the desired transponder cannot be
obtained, the measurement selection logic immediately calls

for a measurement with the next transponder. If none of the three
transponders can be reached, the measurement selection logic
allows the normal 10 sec interval to pass before again attempting
to reach any transponder. BAs a result, with the baseline trajec-
tory and baseline transponder locations, after the overflight

of transponder 2, one finds that measurements to the most daistant
transponder (1) can no longer be obtained. Typically only one
more measurement to transponder 3 s obtained before i1t also is
unreachable. Finally, only two more measurements are obtained

to the nearest transponder (2) before 1t also i1s unreachable.
Touchdown and rollout are accomplished based on the inertial
navigation alone. The effect of other wvalues for the elevation
cut-off angle 1is presented in Section 4.7.

4.1.4 Monte Carlo Simulation. For the baseline system performance
demonstration, five landings have been conducted with 1independent
random sources of navigation error., Errors selected independently
(by a random number generator) for each of the five landings
include: 1initial position errors (3), initial velocity errors (3),
initial platform misalignments (3), transponder biases (3),
propagation error (1), acceleration biases (3), accelerometer
scale-factor errors (3), accelerometer input axis misalignments

(3 x 2), gyro bias drift rates (3), gyro acceleration sensitive
drift coefficients (3 x 2), gyro input axis misalignments (3 x 2),
gyro torquing scale factor errors (3), and gravity deflections

and ancomaly biases (3). In addition, the random number generator
utilized throughout the simulation (for multipath and other

random measurement exrors) is started at a different random

number for each of the five landings. The standard deviations

used in conjunction with the random number generator to select

the five sets of navigation-error sources are those presented in
Sectaion 2.1 for the DME, in Section 2.2 for the IMU and gravity,
and in Section 3.4 for the initial navigation errors. i

The results of the five landings are summarized in Table 4-1.
The root-mean-square (RMS) values (taken over the five landings)
of the actual navigation errors are presented. Also shown is the
square-root of the corresponding diagonal element of the on-board-
computed error-covariance matrix P. Three instants of time are
presented: 1) immediately after the 1initial position fix and
covariance initialization, 2) turning onto final approach, and
3) touchdown. The changing value of the gravity anomaly (as the
vehicle flies across the terrain) 1is not printed by the simulation,
so the actual RMS value of state-variable 10 1s not presented
in the table.
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After initial Turning onto At touchdown
position faix final approach
t = 0 sec t = 126 sec £t = 280 sec
RMS error Pl/2 RMS error Pl/2 RMS erxor Pl/2
State Variable Units 5 runs 1st run 5 runs 1st run 5 runs 1st run
1. Error in east meters 1.6 1.4 .67 +71 ! .35 .37
position
2. Error in ncrth | meters 7.3 9.6 4.8 3.8 .88 ) .88
position
3. Error in meters 7.5 8.7 5.0 4,1 .57 .82
altatude
4. Error 1in east cm/sec 1140 1000 3.1 2.8 1.9 1.0
velocity
5. Error in north| cm/sec 1350 1000 9.6 11,1 6.7 6.5
velocity
6. Error in
altitude rate cm/sec 1140 1000 2.8 6.7 2.6 3.4
7. Platform tip | malli- .96 1.50 . 36 .26 .14 L .26
about east radian i
8. Platform tip mirlli- .78 1.50 .18 .27 .11 .15
about north radian
9. Platform azi- millai- 1.23 1.50 .19 .74 .36 1.4
muth error radian
10. Magnitude of cm/sec2 - .12 - .082 - .037

gravity and
accel. error

0b81-898 (£19) » 6£120 SLIASNHIOVSSYN 'FoaIHaWYD » 133418 NI3HD 08¢ (GILVHOSHOONI SOIHLINHILNI

e e —— e -

Table 4-1 Baseline System Performance Results



The time histories of the position and velocity errors
for each of the five landings are plotted in Figures 4-3 through
4-8. 1In addition, the on-~board computed position and velocity

lo uncertainties (square root of the corresponding covariance-
matrix element) are shown. The onboard-computed uncertainty

1s taken from the firxst of the five Monte-Carlo runs. (The
computed uncertainties from the other runs are equal to within
two or three significant figures.) The cross-hatched area 1s the
band between plus and minus the onboard-computed 1o uncertainty.
The plot program was told to skip the first 50 sec of data to
avoid problems with the fregquently off-scale early navigation
errors and uncertainties.

The onboard-computed l¢ uncertainties are plotted by
themselves 1n Fig. 4-9 and 4-10. This 1s for clarity and 1is also
for comparison with the similarly-presented results of the
subsequent parametric studies. Each plot-point i1s the computed
uncertainty after incorporating one measurement. The vertical
discontinuities show the uncertainty reduction associated with
the second measurement of the measurement pair (the delta range
measurement) .

4.1.5 Interpretation of Results. The performance of the initial
position fix logic (shown in Table 4-1) 1s excellent. Independent
of the 1initial inertial navigation position error (30 km east,

30 km north, 3 km altitude 1o 1n this Monte-Carlo simulation),
all components of position error have been reduced to less than
10 meters RMS, Of course, this very excellent performance is
related to the good initial measurement geometry of this simula-
tion, which starts at t=0 already in the terminal area. The
performance of the i1nitial-position-fix logic starting much
farther from the terminal area is presented in Section 4.4.

The initial position 1o uncertainties (computed by the onboard
equations as a function of the position-fix results) are seen

to be 1n excellent agreement with the RMS errors.

The majority of the individual Monte-Carlo position and
velocity error time-histories (Figs. 4-3 through 4-8) are seen
to be within the onboard-computed 1l uncertainty band. Similarly,
the RMS results, calculated at three instants, (Table 4-1), are
generally close to the onboard-computed 1¢ uncertainty. This
1s evidence that the on-board navigation equations have been
designed satisfactorily. The choice of state variables i1s satis-
factory. The statistical models, used to account for the sources
of navigation error, maintain the computed uncertainties at
appropriate levels. We are pleased that no adjustment of the
statistical models used by the filter (as presented in Chapter 3)
was necessary to obtain these performance results. The filter
has not been "tuned" to the baseline simulation.
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In this and all subsequent simulations, the runway 1s oriented
east-west. Thus, easterly navigation errors are errors directed
parallel to the runway. This i1s the direction having the most
relaxed accuracy specifications. The northerly navigation errors
are errors directed across the runway. Moderately
tight accuracy specifications apply to this direction to ensure
that the vehicle will not let i1ts landing gear slip off the side
of the runway. The altitude direction has the most straingent
accuracy regquirements, The RMS position and velocity erxrors
at touchdown are again presented in Table 4-2. Also presented
are the navigation accuracy specifications (log) for each component
of position and velocity. The RMS errors in every case show
better performance than the accuracy specification. 2 xz
test of the statistical significance of the five-run Monte-Carlo
results grves confidence that the baseline system indeed meets
the accuracy specification. The confidence that an individual
component of position or velocity meets 1t s specification is
presented in the last column of Table 4-2,

The figures and tabulated data show that accurate navigation
1s achieved throughout final approach, touchdown, and rollout.
After touchdown, the divergence of the altitude and altitude-rate
can be 1gnored. The north position error also diverges, but cannot
be i1gnored 1f thas 1s a Category III-C landing (cannot see to
control rollout or taxiing). If measurements to transponder 3
could be guaranteed while on the runway (0° elevation angle)
then the growth of cross-runway position error would be eliminated.

The effect of £flying over transponders 1 and 2 on final
approach 1s clearly seen in Fig. 4-5 ., The excellent altitude-
measurement geometry reduces the altitude error to near zero.

Note the excellent performance of the in-flight alignment
capability. Table 4-1 shows that near the end of the turn onto
final approach (t = 126 sec), the IMU misalignment has been
reduced noticeably about all axes including the azimuth axis.

The excellent azimuth performance in this simulation is due to
the prolonged-turn acceleration. A straight-in approach trajectory
would not have the necessary horizontal AV to improve the azimuth
migalignment significantly. On final approach, the steady lg
vertical specific force permits the in-flight alignment capa-
bility to reduce further the tips about the east and north axes.
The absence of strong horizontal AV permits the azimuth gyro
drift to degrade the azimuth alignment. However, the accuracy at
touchdown is still noticeably better than at the beginning of

the simulation. Note the driving noise that models azimuth-gyro-
drift rate is conservatively large, the onboard-computed lo
uncertainty in azimuth alignment at touchdown being four times
the actuwal RMS misalignment. >
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Confidence

RMS error lo nav. system
Navigation Error Unats 5 runs Spec meets spec.
Error in east position
(along runway) meters .35 10 .99
Error in north posi-
tion (across runway) meters .88 1.7 .92
Error in
alt1tude meters .57 1 .90
Error in east
velocity (along cm/sec 1.9 100 .99
runway)
Error in north
velocity (across cm/sec 6.7 17 .98
runway)
Error in altitude
rate cm/sec 2.6 5 .92

Table 4-2 System Performance and Accuracy
Specification
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The most significant conclusion that follows from the baseline
system performance demonstration 1s that the DME-aided-~inertial
system meets the shuttle landing navigation accuracy specifica-
tion. An independent source of altitude information 1is not
required.

A five-run Monte-Carlo simulation requires five times as much
computer time to generate i1ts results as 1s required for a single
run. Having establashed with confidence the basic performance
capability of the landing navigation system, we will no longer
exercise the Monte-Carlo simulation. For the parametric results
presented in the following sections, we shall quote the onboard-
computed 1o navigation uncertainties from single runs. The
baseline Monte-Carlo results have shown that there 1s excellent
agreement between these uncertainties and the actual RMS naviga-
tion errors.

4.2 Does the Approach Pattern Affect the Results?

One might reasonably ask: does the excellent performance,
demonstrated in the previous section, depend on the approach
trajectory? Two additional landings have been simulated to
answer this question.

4.2.1 Landing With Airport Overflight. The approach pattern
shown i1n Figs. 4-11 and 4-12 has been simulated. This approach
pattern i1s typical of the two-turn energy management guidance
of Moore (Reference [4-2]). This particular trajectory is
guite favorable for the navigation because 1t flies directly
over the airport at high altitude, thereby giving excellent
geometry for the initzalization.

The resulting navigation performance 1s shown in Figs.
4-13 and 4-14. (The baseline system performance was shown 1in
Figs. 4-9 and 4-10.) As expected, there is some improvement
in the initial performance, especially in the velocity errors.
After turning on to final approach, there is very little difference
between this and the baseline saimulation. After touchdown, the
easterly (down runway) position and velocity errors are larger.
This 1s because the flare trajectory was somewhat lower in thas
simulation causing a loss of data from all transponders earlier
before touchdown. The level of error, however, i1s still extremely
small compared with the down-runway tolerable errors.
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4,.2.2 Landing Waith Approach From Side. A less favorable approach
pattern 1s shown in Figs. 4-15 and 4-16. Here the wvehicle
approaches the terminal area from the side and does not overfly
the airrport before turning onto final approach.

The resulting navigation performance i1is shown in Figs. 4-17
and 4-18. As expected, the errors after initialization are some-
what larger. Most noticeable are the increased altitude and
altitude~rate errors. However, after turning onto final approach,
there 1s very little difference between this and the previous
simulations.

We conclude that with adequate transponder geometry the
approach pattern has very little influence on the navigation
accuracy at touchdown.

4.3 How Many Transponders Are Required and Where?

The baseline system simulation results presented in Section
4.1 showed that there exists at least one configuration with
three transponders that permits the landing navigation system to
meet the accuracy specification. Are there better locations
for the three transponders? 1Is 1t possible to land with only two
transponders? How many additional transponders must be deployed
to ensure satisfactory failure tolerance? These and other guestions
concerning transponder deployment are discussed in this section,
A recommended deployment 1s presented.

4.3.1 Geometric Considerations. The transponder configuration
utilized in the baseline simulation was shown in Fig. 4-1.

Two transponders are placed under the final approach path: the
outer transponder 15 km from touchdown, the inner transponder

3 km from touchdown. A third transponder 1s located 3 km to the
side of the middle of the runway. The placement of two trans-
ponders under the final approach path has been suggested by McGee
and his associates [4-3] at NASA/ARC and by Price [4-4] at NASA/
MSC. We have placed the third transponder to the side of the
middle of the runway so that 1t will be equally effective for a
final approach from either direction. This helps minimize the total
transponders to be required.

Price [4-3] analyzed the geometric dilution factors associated
with alternate locations for three transponders. Some of has
conclusions are: the down-runway and altitude accuracy is depen-
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dent only on the outer and inner transponder placement., The cross-—
runway accuracy 138 dependent only on the lateral transponder
placement. All in-plane transponder placements give satisfactory
down-runway accuracy. The lateral transponder when placed farther
from the runway generally gives better cross-runway accuracy.

But 1f the wvehicle pattern has a blind zone to the side, for

the farther lateral locations the signal 1s lost earlier. The
outer approach transponder 1f placed at a greater distance from
the runway gives better altitude accuracy earlier. If placed
closer to the runway, it gives better altitude accuracy between

i1t and the inner transponder. The placement of the inner trans-
ponder 1s a trade-off between the desire to minimize the duration
of the pure-inertial-navigation period versus the desire to have
sufficient time to obtain multiple measurements over the inner
transponder with good altitude geometry.

4.3.2 Inner-Approach-Transponder Placement. Two simulations
have been run, one with shorter and one with longer iInner-trans-—
ponder distances from the runway. The outer and lateral trans-
ponders have been held at their baseline locations. The baseline
landing trajectory (Figs. 4-1 and 4-2) has been used. The
results with the inner transponder only 1.5 km from touchdown
are shown in Figs. 4-19 and 4-20. (The results with the inner
transponder at the baseline distance of 3 km were shown in Figs.
4-9 and 4-~10.) Comparing the 1.5~km and 3.0-km results, the
performance 1s nearly identical from initialization through the
turn onto final approach over the outer transponder. On final
approach the altitude errors build in a similar fashion. The
peak altitude error (before reaching the inner transponder) ais
slightly larger for the 1.5-km case because of the additional

15 sec to reach the inner transponder. Conversely, the altitude
error at touchdown i1s smaller in the 1.5 km case because the
pure-inertial f£light time has been shortened from about 30 sec
to about 15 sec. The touchdown navigation-accuracy specifica-
tions are met 1n both cases.

The results with the inner transponder moved out to 6 km
from touchdown are shown in Figs. 4-21 and 4-22. Again the
performance is unchanged from initialization through the turn
onto final approach. On final approach the altitude error is
held to less than two meters, because of the consistently good
geometry between the outer and inner transponders., This
excellent performance early on final approach is achieved at the
expense of the touchdown accuracy. The duration between the
time the vehicle i1s directly over the inner transponder and the
touchdown time 1s 58 sec. During this interval the normal measure-
ment sequence 1s resumed. The measurement pairs incorporated
during this interval are with transponder 3,1,2,3,3 (in that
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order) each pair 10 sec apart, after which no additional measure-
ments can be obtained because of the 1° elevation-angle cut-off
The 58 sec interval with extremely poor vertical geometry permits
the altitude error to grow to about 1.7 meters and the altitude-
rate error to grow to about 5 cm/sec at touchdown. {The exact
values at touchdown were not printed or plotted by the simulation;
so these values are estimates obtained by extrapolating the
available data.) The onboard-computed altitude uncertainty of
1.7 meters 1o exceeds the navigation system specification of 1
meter 1lo. The altitude-rate uncertainty is exactly at the speci-
fication level, The 6-km inner transponder deployment is
unacceptable.

The factors influencing the choice of inner-transponder
distance are summarized in Fig. 4-23., The transponder may be
placed no more than 4 km from the nominal touchdown point, or the
altitude navigation accuracy will not meet the 1 meter 1lo
specification at touchdown.

On the other hand, the closer-in locations yreld a larger
peak altitude error on final approach. This peak error occurs
just before reaching the inner transponder. A 3.2 meter lo
altitude error exists approaching the transponder at 1.5 km.
There 1s only 15 sec from measuring this error {(over the inner
transpondexr) to touchdown -- 15 sec in which to i1ncorporate
the measurement into the navigation, to compute new guidance
commands, and to obtain vehicle control response. The response
requlrement imposed upon the navigation, guidance, and control
by the 1 5-km inner-transponder placement seems unacceptable.

An additional factor, working against a close-in placement,
1s the required measurement rate to obtain redundant measure-
ments., Assume that three measurement pairs are desired with
the inner transponder during the period of excellent altitude
geometry. (The need for three measurements 1s established by
considering the effect of not obtaining at least one good altitude
measurement. Three measurements permits data voting to eliminate
a bad measurement.) The region of excellent geometry extends
about plus and minus 20° elevation angle away from zenith. The
closer the transponder i1s placed to touchdown, the lower will
be the altitude of the wvehicle, the shorter will be the duration
of the favorable update period, the higher will be the reguired
measurement rate. Assuming measurement palirs can be timed to
occur at the beginning of, at the middle of, and at the end of the
traversal of the 40° cone, then the required rate for measurement
pairs 1s as plotted in Fig. 4-23. At the 1.5 km distance, the
required measurement rate 1s 1.9 pairs per sec. Price [4-4] has
considered an even lower trajectory (3° flight path angle before
touchdown), which results in a higher required measurement
rate.
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Based on the above considerations we recommend that an inner-
transponder placement between 2 km and 4 km (from the nominal
touchdown location) be used. The baseline 3 km location 1is entirely
satisfactory.

4.3.3 Lateral-Transponder Placement. The lateral transponder
placement governs the cross runway position and velocity errors.
The baseline lateral-transponder location is half-way down the
3-km (10,000-ft.) runway and 3-km to the side. The placement
half-way down the runway was selected so that the lateral trans-
ponder 1s edqually effective for approaches from either direction.
The 3-km distance-to—-the-side 1g the typical maximum distance-to-
the-si1de still permitting an unobstructed line-of-sight from
vehicle to transponder during flare and touchdown. (Such would
be the case at a typical "sguare" airpori having a second major
runway and cleared ground crossing the praimary runway.)

Lateral-transponder distances closer to the runway may be
congsidered. Figs 4-24 and 4-25 present the results of a simula-
tion with the lateral transponder at the middle ¢f the runway
only 1.5 km to the side. In comparing with the baseline system
results (Figs. 4-9 and 4-10) 1t 1s seen that the navigation
accuracy at touchdown i1s about the same. The cross-runway (north)
velocity error at touchdown 1s slightly lower in the 1.5-km
case because one more lateral measurement could be obtained before
the 1l°-elevation cut-off. Both systems meet the touchdown
accuracy specification.

However, the cross-runway position error on final approach
1s noticeably higher in the 1.5 km case, due to the more severely-
diluted lateral geometry. This error is not reduced until after
the altitude has been updated over the inner-approach transponder.
This 1s a dangerously-late time to make any substantial correc-
tion to the lateral vehicle position. Large bank angles must be
inhibited to reduce the probability of a wing-ground contact,
The wider-lateral-transponder placement 1is therefore judged to
give superior system performance.

An additional reason to prefer a wide lateral placement 1is
that 1t also provides better transponder geometry at initaalizataion.
Initialaization results are presented in Section 4.4.

We recommend that the lateral transponder be placed at the
middle of the runway and at the maximum distance to the side that
is free of line-of-sight restrictions for either approach direc-
tion. The baseline distance of 3 km gives satisfactory system
performance. An elevation-angle cut-off larger than the 1° cut-
off can alter this recommendation (see Sect. 4.7}.
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4.3.4 Outer-Transponder Placement. To assure good altitude
geometry, the outer—-approach transponder should be placed under
the final-approach path. A cursory review of some proposed
guidance techniques (Refs. [4-1] and [4-2]) indicated that the
vehicle will have turned onto final approach no later than about
15 km from touchdown. Accordingly, the baseline outer-approach
transponder was placed at 15 km. At a greater distance, one
cannot be certain that the vehicle will fly over the transponder.

Shorter distances may be considered., A saimulation has been
run with the outer-approach transponder moved from 15 km to 9 km
from the runway. This reduces in half the distance between
th- outer transponder and the 1nner transponder, which i1s at the
baseline distance of 3 km. The simulation results are presented
in Faigs. 4-26 and 4-27. Compared with the baseline system perfor-
mance (Figs. 4-% and 4-10), the position and velocity navigation
errors at touchdown are unaffected. Both systems meet the landing
specizfication,

The most noticeable difference in performance 1s in the
altitude navigation accuracy on final approach The 15-km
placement gives an earlier reduction of the altitude uncertainty.
The 9-km placement gives a smaller peak altitude erroxr between
the outer and inner transponder. These results are in agreement
with the observations of Price [4-4] based on purely geometric
considerations. In either case the altitude errors on final
appreoach would seem acceptable, so there 1s little to recommend
one placement as better than the other.

One simulation has been run with only one of the three trans-
ponders under the final approach path. The transponder deploy-
ment 15 shown in Fig. 4-28.

This deployment was tried, because i1f successful, the total
number of transponders required to instrument both approach direc-
tions 1s reduced.

The simulation results are presented in Figs. 4-29 and
4-30. The easterly and northerly position and velocity performance,
compared with the baseline performance, 1s changed very little.
These components of navigation uncertainty continue to meet the
landing navigation specification. But the altitude-~rate uncertainty
15 never brought below the 5 cm/sec landing specification, even
while directly over the approach transponder. The altitude
uncertainty on final approach 1s as large as 10 meters. This is
reduced to a small value over the approach transponder, but the
velocity uncertainty causes the altitude uncertainty to increase
such that 1t 1s larger than the 1 meter specification at touchdown.
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We conclude that with the very stringent Shuttle landing
navigation accuracy specification (on altitude and altitude rate},
two transponders are required under the final approach path.

The exact placement of the outer-approach transponder is not
crrtical. Placements from 9 km to 15 km from the runway yield
satisfactory performance. Including the lateral transponder, a
minimum of three working transponders are required to meet the
accuracy specification.

4.3.5 Only Two Transponders. A limited number of simulations
have been run to explore the navigation performance that can be
achieved with only two working transponders.

The initial position fix logic as designed in Section 3.4
reguires three nearly simultanecus non-coplanar range measure-—
ments. Therefore, this initialization logic cannot be used 1f
only two transponders are working. Alternate initialization logac
can be designed. For example, the altitude (as inferred from
the measured acceleration) could be used ain conjunction with two
range measurements., The ainitialization logic has not been
re-designed in support of the two-transponder simulations.
Rather, we have assumed that a satisfactory initialization logic
does exast and 1f used can reduce the navigation exrrors to 100
meters lo along each axis (east, north, up}. It i1s with these
100 meter lo errors that we have started the two-transponder
simulations in the terminal area. The trajectory of Fig. 4-1
has been used.
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The simulation results have been disappointing. Frequently
there is poor agreement between the onboard-computed lo
uncertainties and the actual level of navigation error. The
onboard-computed uncertainty becomes smaller as measurements
are processed, however, the actual position and velocity errors
decrease much more sluggishly or in some cases actually increase,
Such behavior i1s symptomatic of nonlinear effects causing filter
divergence.

Note that the range measurements have been protected
against the nonlinear elongation of the measured range (subsection
3.3.1). However, we have not designed similar protection for
the delta~range measurements. Suspecting that nonlinear diffai-
culties might be entering through the delta-range measurements,
the delta~range measurements were disabled in the simulation,
and navigation was attempted using rande measurements alone.
The results were better, however, the actual-error-to-computed-
uncertainty ratios still showed some divergence.

A fundamental problem with using only two transponders 1is
that there exists a trajectory direction that is likely to yield
poor navigation filter performance. If the vehicle velocity
vector 1s parallel to the line connecting the two transponders,
then the ensuing time-history of range measurements to the two-
transponders never yields a position fix. In other words, there
exist a family of possible vehicle trajectories (having parallel
velocity vectors but spread around the surface of a cylinder
whose axis 1s the line connecting the two transponders) for which
the measured ranges to the transponders evolve identically in
time. This saituation 1s 1llustrated in Fig. 4-31.

Such i1s nearly the situation in the similations run with
the baseline trajectory (Fig. 4-1) and utilizing the inner-approach
transponder west of the runway and the lateral transponder south
of the runway. The average vehicle velocity vector in the first
50 sec of the simulation 1s nearly parallel to the line connecting
the two transponders. -

To eliminate this unfavorable initial situation, the lateral
transponder was moved to the other side of the runway (3 km
north). The resulting simulation yielded the best performance
of all the two-transponder simulations runs. Selected data from
this simulation 1s presented in Table 4-3. The anitial errors,
IMU component errors, and other constant error coefficients
generally were selected to have specific values equal to plus
one-sigma (that 1s, the errors were not randomly selected). The
initial navigation is accomplished with range neasurements only.
The results after the first 160 sec of range-only navigation 1is
presented in the table. All actual navigation error components
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(in this single case simulation} are of comparable or smaller
value than the onboard computed uncertainty. This indicates
satisfactory filter performance. From t=210 sec on final
approach to touchdown, the delta-range measurements are also
used. The vehicle flies over the approach transponder, which in
this simulation was 1.4 km from touchdown. Three measurement
pairs with the approach transponder are incorporated. The wvehicle
1s at touchdown at 180 sec. The navigation accuracy at touchdown
1s guite good. However, the actual and onboard-computed altitude
errors exceed the 1 meter 1o specification, and the actual and
onboard-computed altitude-rate errors exceed the 5 cm/sec speci-
fication.

With a favorable approach trajectory and transponder deploy-
ment, the accuracy specification is not guite met. With an
unfavorable approach trajectory, the performance can be quite
bad. This supports our previous conclusion that two transponders
alone do not provide satisfactory landing navigation system
performance.

4.3.6 Failure Tolerance and Recommended Deployment. A single
interrogator 1s of the complexity that the mean time between
failures (MTBF) 1s of the order of 2000 hours. Given that an
interrogator is working before launch, the probabilaity that i1t
will not fail during a 200 hr. mission 1s approximately 0.90.

To obtain a better probability that a working interrogator
1s available, multiple interrogators should be installed in the
vehicle. With two aboard, the probability that at least one is
working after 200 hr. 1s .99. With three aboard, the probability
that at least one 1s working after 200 hr. 1s .999, and so forth.
Depending on more precise estimates of the transponder MIBF,
the required operational duration, and the desired probability
of mission success, one can determine whether three or four inter-
rogators should be placed aboard each vehicle.

A transponder 1s less complex than an interrogator. The
MTBF 1s of the order of 7000 hours. One or two additional
transponders can be stored as spares at each landing site. When
one of the deployed transponders in the terminal area is found
to have failed, a spare transponder should be used to replace
the failed transponder. In this manner one can insure that all
transponders are working before the orbiter performs the deorbit
burn committing itself to landing at the specific airport.
If 70 hours elapse between the time when all transponders were
last checked (and found to be working) and the time the vehicle
lands, the probability that one particular transponder 1s working
at landing 1s ,.99. If three transponders have been deployed
(such as to instrument approach from a single direction), the
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probability that the three are all working at touchdown is
.97.

To obtain & better probability that a sufficient set of
transponders 1s working at touchdown, additional transponders
should be deployed. Assume that an additional transponder is
collocated with each of the original three transponders. At
each location, the probabilaity that at least one of the two i1s
working 1s .9999., The probability that at least one 1s working
at each of the three locations 1s .9997. If thais i1s not adequate
to support the desired probability of mission success, then one
should inspect the transponders closer to the landing time. If
the time from inspection to the Shuttle landing 1s reduced from
the order of 70 hours down to 7 hours, then the probability that
at least one (of the two) is working at each of the three loca-
tions 1s ,99%997. The point 1s that no more than two transponders
at each critical location are required.

Two transponders at the same location give no navigation
performance i1mprovement in the normal situation, where both are
working., A better deployment strategy is to separate the paired
transponders to increase the geometric diversity. Instead of
collocating the two inner-approach transponders at 3 km from
touchdown, one transponder should be placed at 2 km from touch-
down and the other should be placed at 4 km from touchdown. When
both are working, the navigation performance will be better than
the specification. ITf one transponder fails, the other trans-
ponder 1is located such that the performance specification will
st1ll be met. Similarly, instead of collocating the two lateral
transponders at the same side of the runway, one transponder
should be placed on one side of the runway and the other should
be placed on the opposite side (assuming both locations give
good line of sight).

Similarly, the two redundant outer-approach transponders
can be separated. One transponder can be placed 15 km from the
runway, and the other can be placed 9 km from the runway.

The basic transponder deployment recommended i1s shown in
Fig. 4-32. Ten transponders are deployed. This recommended
deployment instruments both directions—of-approach to the
longest runway, permitting upwind landing. With all transponders
functioning, the landing navigation performance will be better
than the specification. If any single transponder fails, the
landing navigation performance will meet the specification.
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3 45

Fig. 4-32 Transponder Deployment, Tolerant of Single
Failure and Instrumenting Both Approaches
(distances in kilometers)

The most critical transponders are the inner-approach
transponders and the lateral transponders. The outer-gpproach
transponders are less critical. Perhaps two outer-approach
transponders are not required for each approach direction. What
would be the performance 1f only one outer-approach transponder
were deployed and 1t fairled? One three-transponder saimulation
was run with the two working inner-approach transponders at 2 km
and 4 km from the runway and one lateral transponder 3 km to the
side of the middle of the runway. The onboard-computed uncertainty
almost met the touchdown specification. But the actual (single
case) errors in altitude and altitude rate diverged from the
onboard-computed uncertainty. At touchdown the altitude naviga-
tion error was 4.5 meters and the altitude-rate error was
17 cm/sec. Apparently, the spacing of the two inner-—approach
transponders (2 km) 1s not sufficient to guarantee good naviga-
tion performance. Perhaps 1f a fourth transponder (one from the
opposite approach path) were added to the measurement sequence,
good performance could be obtained. Such a simulation has not been
run. Based on the limited simulation results, 1t 1s conservative
to stay with the ten-transponder recommendation. Additional
study can later indicate 1f the redundant outer transponders
can be eliminated, reducing the required deployment to a set
of eight,
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4.4 Are Additional Transponders Required For Distant Initialization?

4.4.1 Initiralization-Range Requirement. The navigation error
after hypersonic entry will be of the order of 10 km lo horizontal
position error. The altitude, derived from the measured acceler-
ation, should be accurate to about 3 km lo. With this quality
entry navigation, early updating of the state vector is not
urgent.

Consider that one walts until the vehicle has decelerated
to subsonic flight. A typacal altitude at which the vehicle
has slowed-down to Mach 1 1s 18 km., (60,000 £ft.) With a
maximum subsonic L/D of 8, the no-wind footprint (from 18 km
altitude) 1s a circle of radius 150 km. The entry navigation
error of 10 km 1¢ 1is still a small fraction of the vehicle-
footprint radius. Hence, updating can wait until a 150 km
distance from the airport.

Note that at Mach 1, the vehicle speed 1s well below the
speed at which there 1s a blackout of S-band radio transmissions.
Blackout should end at about Mach 10.

Note also that the Shuttle subsonic maximum L/D is only 8.
Hence, the approach flight path angle will be no shallower than
1/8 radian (7°). The vehicle elevation angles as seen from the
several transponders at the airport will be about the same
value., Therefore, there 1s no problem with poor quality DME
measurements associated with very low elevation angles. Also,
there i1is reasonably good altitude-measuring geometry.

The curvature of the earth and the bending of the radio
waves does not noticeably reduce the elevation angles at a
distance of 150 km. Fig. 4-33 shows the elevation angle 6
of the radio wave at the ground as a fiunction of the vehlcge
altitude and distance. This figure 1s based on data from
Ref, [4-5]. The radio-wave paths shown assume a sea-level wave
retardation of 350 parts per million. A Shuttle straight-in
trajectory 1s the dashed line in Fig. 4-33.

Note the region of good radio-elevation angle (above 3°)
extends out to 600 km. Initial updating could begin as early as
600 km. Such earlier initialazation would provide excellent
latitude and longitude determination. The altitude measuring
accuracy, however, would be degraded. An alternate inatialization
logic could be developed which blended the drag-derived altitude
with the DME data. Such earlier initialization might be
necessary 1f the inertial navigation errors are larger than
10 km 1o (such as in a once—around abort with no update since
launch).
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Fig 4-33 Radio Elevation Angle and Shuttle Trajectory

4.4,2 Uncertainty After Initial Fix. The initialization logic
has been exercised at various locations at 150 km from the
airrport and at 50 km from the airport. In every case the initial
altitude 1s 18.6 km. The three transponders utilized are
located two along final approach at 15 km and 3 km from touch-
down, and the third at the middle of the runway 3 km to the side.
The runway and transponder locations are shown at the center of
Fig. 4-34. The results of the several initializations are also
shown on Fig. 4-34. The onboard-computed lo uncertainties

after the fix are presented near each initialization location.
The most severely diluted result is the 773 meter lo altitude
error for the Shuttle 150 km to the north (approaching from the
side of the runway). The altitude geometric dilution factor

at 150 km with a northerly transponder separation of only 3 km
and an elevation angle of only 1/8 radian 1s about 8 x 150/3 =
400. This factor multiplied times the accuracy of the range
measurements, which are of the order of 2 meters lo, makes a
result of the order of 800 meters for altitude seem reasonable.
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4.4.3 Performance From Distant Initialization Through Touchdown.
Two simulations have been run all the way from initialization

at 150 km to touchdown and rollout. These simulations include
the three-range measurement position fix; three additional
measurement pairs at t=2, 4, and 6 sec to update the velocity;
followed by a 10 min., period with measurements taken only every
30 sec. The measurement rate 1s increased to one palir every

10 sec at t=600, following which the measurement selection logic
15 the same as in the baseline simulation. All other conditions
are as 1n the baseline simulation.

One simulation has been started in the worst location (for
the transponders being used), namely 150 km to the north. To
provide a navigation test with consistently poor altitude-
measuring geometry, the vehicle i1s not allowed to overfly the
airport. Rather the wvehicle glides directly to the final approach
entry point and executes a left turn i1n, as shown in Fig. 4-35,

The onboard-computed 10 navigation uncertainties are
presented in Figs. 4-36 and 4-37. ©Note the changes in both the
error scale and the time scale. After turning onto final approach
and over-flying the outer transponder X1, the results are
essentially the same as in the baseline saimulation

A second simulation 1is a straight-in approach from 150 km
to the west. The straight-in approach stresses the navigation
system in two ways different from the previous simulation:

1) The northerly-measuring geometry i1s always weak. 2) With
no turn acceleration, the in-flight azimuth error 1is less
readily controlled.

The onboard-computed 1l navigation uncertainties are
presented i1n Figs. 4-38 and 4-39. Again, after reaching the
outer transponder X1, the results are essentially the same as
in the baseline simulation.

The actual (single case) navigation errors in these two
runs have been compared with the onboard-computed uncertainties.
There 1s some divergence of the actual-error-to-uncertainty
ratio during the long 10 min, flight from 150 km into the
terminal area. At t=10 min. in the north-approach simulation
there 1s an actual north error of 45 meters with an onboard
computed uncertainty of only 8.5 meters. However, on final
approach such disagreement is quickly eliminated. At touchdown
the actual errors are completely consistent with the onboard-
computed uncertainties. Again, the onboard equations design
appears quite satisfactory.
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In both runs, the initial azimuth error was 1.5 milliradiamn.: :
The run that turns into final approach resulted in an azimuth
misalignment at touchdown of 0.1 milliradian. The straight-in
approach yielded an azimuth misalignment at touchdown of 0.9
milliradian., Yet in spite of the larger alignment error, the
straight-in velocity errors and position errors were as good
at touchdown as in the other case.

The significant conclusion is that no additional transponders
need be deployed to assist the landing navigation initialization.
The terminal area transponders (which have been deployed solely
to optimize the £final approach and touchdown performance) are
sufficient to perform initial updating at a distance of 150 km.

4.5 Effect of Measurement Rate on Performance

4.5.1 Performance With A Measurement Paixr Every 5 Sec. In the
baseline simulation, one measurement pair (range and delta

range) 1is incorporated every 10 sec. However, the normal
measurement sequence and rate 1s interrupted at the inner-approach
transponder to obtain three measurement pairs, two of which

have excellent altitude-measurement geometry.

In Figs. 4-40 and 4-41, the results of an alternate
simulation are shown where the measurement rate has been increased
to one pair every 5 sec. starting at t=206. That i1s, the simu-
lation 1s 1dentical to the baseline simulation until 8 km from
touchdown, after which the measurement rate i1s doubled. Near
the inner-approach transponder five measurement pairs are
incorporated, two of which have excellent altitude-measuring
geometry. Comparing the results with the baseline results
shown i1n Figs. 4-9 and 4-10, 1t 1s evident that i1ncreasing the
measurement rate does little to improve the landing-navigation
accuracy. A slight improvement in north velocity accuracy 1s
seen. With At=5 sec, two measurement pairs to the lateral
transponder were obtained after inner-approach-transponder
overflight before the 1° elevation-angle cutoff. In the
baseline simulation with At=10 sec only one such measurement
pair was obtained.

4.5.2 Recommended Measurement Rates. No single measurement
rate 1s appropriate for all phases of the approach and landing.

When updating of the inertial navigation first begains,
three measurement pairs are taken as rapidly as possible to
approximate simultaneous range measurements.
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After the initial position fix, three additional measure-
ment pairs are incorporated to update the velocity. One pair
every 2 sec gave satisfactory performance. A slower rate would
probably also be satisfactory.

Next follows a long phase during which the vehicle
glides from as far as 150 km away to the terminal area. Thais
phase can be as long as ten minutes. The transponder-to-
vehicle direction vectors change very slowly during this terminal
approach phase. A rapid measurement rate 1s not only unnecessary
but may also be undesireable. A large number of measurements
with little or no geometry shift can lead to divergence of the
actual errors relative to the onboard-computed uncertainty.
A sample rate of one measurement pair every 30 sec gave satis-
factory performance.

Before turning onto final approach the measurement
rate should be increased to one pair every 10 sec.

Special measurement selection logic must be used on final
approach to ensure the best utilization of the transponder
geometry. Fig. 4-23 showed the measurement rate required to
obtain three measurement pairs within 20° of directly over a
transponder on final approach. For the inner approach trans-
ponder at 2 km, one pair per 0.6 sec 1is required (l.5 pairs
per sec). For the redundant-inner-approach transponder at
4 km, one pair per 1.2 sec 1s reguired (0.8 pairs per sec).
For the outer-approach transponders at 9 km and 15 km, corres-
pondingly lower measurement rates are required.

If the data from the lateral transponder i1is indeed unuseable
at very low elevation angles (such as below 1° as assumed 1in
these saimulations), then special measurement logic can also
be used with the lateral transponder to ensure obtaining
several measurement pairs with the best available lateral geometry
Just before cut-off. However, this 1s not mandatory to meet
the accuracy specification.

4,6 What Range and Delta Range Accuracies Are Required?

4.6.1 Range-Only Performance. One simulation has been

run without the delta-range measurements. All conditions are
the same as in the baseline simulation, except that only a
single range measurement is taken every 10 sec, rather than a
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range plus delta-range measurement pair. The simulation results
are plotted in Figs. 4-42 and 4-43. The performance does not
meet the specification. Most noticeable s the north {cross-
runway) position error at touchdown of 3.5 meter lo. The
altitude error of 1.1 meter 1o slightly exceeds the specification.

Note, compared with the baseline performance, the north
error has quadrupled but the altitude error has only 1increased
by 40%. The relative importance of the delta-range measurement
in aiding cross-runway (north) navigation as opposed to altitude
navigation is related to the dependence of the range accuracy
on elevation angle. The cross-runway measurements are obtained
at low elevation angles where the largest multipath error
(0.9m 1lo) ais likely to occur. The altitude measurements are
obtained at high elevation angles for whaich the multaipath
error 1s likely to be negligible. Hence, the altitude naviga-
tion has less need for assistance from the more precise delta-
range measuring capability (which has been assumed to have a
random error of 0.,1lm lo, aindependent of elevation angle).

o

4.6.2 Performance For Various Range and Delta-Range Accuracies.
Several simulations have been run with various levels of range
and delta-range random error. The multipath error in the range
measurement 1s maintained at 0.9 cos & meter lo. The propaga-
tion error is unchanged at 50 ppm. The transponder biases are
unchanged at 0.3 meter 1o, Only the non-multipath random

error has been increased from the baseline 0.2 meter lo. For
the delta-range measurements, the random error has been increased
from the baseline 0.1 meter lo. The Kalman filter data is
changed to reflect the degraded DME performance. That 1is,

the assumed variance for the DME measurements 1s consistent
with the simulated equipment performance.

The results of these simulations are summarized in
Fig. 4-44, The altitude error (h) and the north (cross-runway)
error (n) at touchdown are presented. (These are the onboard
computed lo uncertainties.) The values, labeling the figure,
for range random error and bias 1s the root sum square of
the 1 non-multipath random error and the lg bias error, For
example, the baseline case 1s (.22 + .32)1/2 = .36 meter.
An arc has been drawn separating those cases which do not
meet the specification from those cases that do meet the speci-
fication, The time histories of the onboard-computed uncertain-
ties for the 1.0 and 0.3 meter case are presented in Figs. 4-45
and 4-46,
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4.6.3 Should the Delta-Range Be Procured? Including the
delta-range measurements does 1increase the landing navigation
accuracy. If one deleted the delta-range measuring capability
from the hardware, then additional transponders would have

to be deployed to bring the cross-runway and altitude errors
within specification. The 10 to 20 percent unit cost saving
for the simpler interrogators and transponders would be offset
by the i1ncreased number of required transponders plus the
increased coperational costs of more extensive f£light inspection
and maintenance.

We therefore, recommend that the delta-~range measuring
capability be included in the landing navigation system for
the Space Shuttle.

4.6.4 Recommended Range and Delta-Range Accuracies. Several
combinations of range and delta-range accuracies are satis-
factory, as was shown in Fig. 4-44., Furthermore, additional
tradeoffs exist between DME accuracy and: number of transponders,
IMU accuracy, fraction of total GNC touchdown budget allotted

to navigation, and so forth. It 1s clear that specifying

DME accuracies 1s intimately involved with other system design
decisions,

An alternate approach 1s to choose the DME accuracy
specifications to be equal to the state-of-the-art and allow
other subsystems to benefit from the performance margin.
We recommend that this approach be used to establish the range-
accuracy specification. But the delta-range accuracy specification
may be relaxed, since non-DME sources of error make the available
accuracy unuseable. The critical specification numbers are
(see Table 2-3): range measurement bias 0.3 meter lg, multipath
range random error 0.9 cos & meter lo, other range random error
0.2 meter lo, delta-range measurement random error 0.1 meter lo.

4.7 Transponder Drop-Qut Before Touchdown

4.7.1 Saimulation Results. In the baseline simulation and all
other simulations up to this point it has been assumed that
satisfactory range and delta-range measurements can be obtained
down to elevation angles as small as 1°. What 1s the result

1f this i1s not the case?
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One simulation has been run with an elevation cut-off
angle of 2°. The results are plotted i1n Figs. 4-47 and 4-48,
A second simulation has been run with an elevation cut-off
angle of 5°. The results are plotted in Figs. 4-49 and 4-50.

The 2° simulation 1s almost identical to the 1° baseline
simulation. Of the measurements incorporated in the baseline
simulation, only the last measurement to the inner—-approach
transponder at 277 sec 1s lost with the increased elevation
angle. Thais permits slight increases in the down-runway
(east) position and velocity uncertainties. These increases
are completely negligible with respect to the specifications.

The 5° simulation exhibits unsatisfactory performance.
The cross-runway (north) position and velocity uncertainties
are far out of specification. The last measurement to the
lateral transponder i1s obtained 920 sec before touchdown. This
1s too long an interval for the inertial navigation to extra-
polate to touchdown,

If at a particular landing site there would be a 5° eleva-
tion angle cut-off at the recommended lateral transponder loca-
tion, then an alternate transponder placement can be used.

The lateral transponder has been moved from the middle of the
runway to beside the final approach path as shown in Fig. 4-51.

TRANSPONDER 1 TRANSPONDER 2 RUNWAY
& ¥ - - - —- ANy a)
15 KM WEST 3 KM WEST

@ TRANSPONDER 3
4 KM WEST, 3 KM SGUTH

Fig. 4-51 Lateral Transponder Beside Final
Approach Path
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The 5° elevation-angle-cut-off simulation has been repeated
with the alternate transponder deployment. The results are
presented in Figs. 4~52 and 4-53. The performance almost meets
the specification. The last measurement to the lateral trans-
ponder occurs 44 sec before touchdown and with excellent
Cross-runway-measuring geometry.

4.7.2 Recommended Testing. The 1° elevation cut-off angle
assumed in the baseline simulation 1s not based on flight test
data. The simulation results indicate that a 2° elevation
cut-off angle still permaits satisfactory system performance

(for the flare altitude-range history simulated). Larger
elevation restrictions will require alternate transponder deploy-
ment. Clearly, the signal characteristics of the DME must be
tested extensively at each instrumented landing site to

guarantee satisfactory performance.

It 1s possible that there 1s no elevation angle restriction
at short ranges with unobstructed line~of-sight. If this is
the case, then the recommended lateral transponder placement
(3 km to the side of the middle of the runway) provides not
only satisfactory touchdown performance but also excellent
roll-out lateral navigation. If automatic (Category III-C)
roll-out control i1is a requirement, the DME characteristics at
zero altitude should be tested extensively.

4.8 Effect of a Degraded IMU

With three or four IMUs aboard the Space Shuttle, there
should be little chance that entry and landing navigation
need be conducted with a degraded IMU. Nevertheless, 1t is
of interest to know how sensitive are the performance results
to the IMU quality?

One simulation has been run with several IMU errors
increased to 30 values. The three accelerometer biases have
been increased to 1.5 x 10-3 meters/sec? (150ug). The three
g-insensitive gyro drift rates have been increased to
4,38 x 10-7 radians/sec (.09°/hr). The easterly and northerly
velocity navigation error after entry have been increased
to 30 meters/sec. The platform misalignment after entry
about each axis has been increased to 4.5 milliradian. The
Kalman filter has not been adjusted to reflect the degraded
IMU performance.
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The simulation results are presented in Figs. 4-54 and 4-55,
The curves marked "standard deviation" are the onboard
computed lo navigation uncertainty. Note these are unchanged
from the baseline performance because the Kalman filter is
unaware of the degraded IMU. The curves marked "error" are the
actual simulated landing navigation errors. It 1s not surprising
that the actual errors generally exceed the onboard computed
uncertainty. It is pleasing, however, that the actual performance
almost meets the touchdown accuracy specification. Only the
altitude 1s somewhat out-of-spec.

We conclude that the landing navigation system performance
1s not craitically dependent on the assumed IMU performance.

A comfortable performance margin exists that can accommodate
mi1ldly degraded IMU performance.
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CHAPTER 5

CONCLUSIONS

Precision DME, aiding the onboard inertial navigation,
1s all that is required to meet the very stringent Shuttle
landing navigation accuracy specification. This can be the
same precision DME that i1s utilized for navigation in other
mission phases such as orbital navigation and rendezvous
navigation. The commonality of onboard equipment will provide
significant cost, weight, volume, and power savings.

An independent source of altitude data 1s not required
This 1s a fortunate conclusion, because 1t was found that
barometric altimetry 1is not sufficiently accurate and radar-
altimetry has difficulty with the terrain altitude variation
approaching the runway.

The onboard equations for landing navigation have been
designed and satisfactory performance has been demonstrated.
Initialization logic obtains a DME position fix after the
hypersonic entry. The uncertainty in this initial fix is
computed as a function of the measurement geometry.

After initralization, a l0-state-variable Kalman filter
processes the measured range and delta-range data. It
estimates and corrects the errors in indicated position and
velocity of the inertial navigation equations. Contributing
to the success of the Kalman filter design are the satis-
factory choice of a low number of critical state variables,
proper treatment of all significant sources of navigation
error i1n modeling these as process and measurement noises,
and compensation to avoid difficulties associated with the
nonlinear elongation of the measured range.

Satisfactory performance of the Kalman filter has been
demonstrated by a five-landing Monte Carlo simulation.
The root-mean-squared values of the actuwal navigation errors
are i1n close agreement with the navigation uncertainty as
computed by the onboard Kalman filter. ©No adjustment of the
statistical models used by the filter was necessary to obtain
the satisfactory performance. This demonstrates the power
of the method of modeling the navigation errors.

-161-

INTERMETRICS INCORPORATED « 380 GREEN STREET + CAMBRIDGE, MASSACHUSETTS 02139 » (617) 8681840



Alternate approach patterns have been simulated. With
the recommended transponder deployment, the approach pattern
has very little influence on the navigation accuracy at
touchdown,

Only two transponders can not guarantee satisfactory
landing navigation performance. With an unfavorable approach
direction the performance can be quite bad.

The minimum number of working transponders necessary to
guarantee satisfactory performance 1s three. Two transponders
must be deployed under the final approach path. 1) the inner
approach transponder may be placed between 2 km and 4 km from
the nominal touchdown location, 2) the outer approach trans-
ponder may be placed between 9 km and 15 km from the runway.

A third transponder must be placed to the side to provide
cross-runway measuring geometry. This lateral transponder

can be placed opposite the middle of the runway, the maximum
distance to the side that is free of line-of-sight restrictions,
This placement permits utilization for either approach direc-
tion. A lateral distance of 3 km gives satisfactory performance.

Failure tolerance requires some level of equipment
redundancy. Three or four onboard interrogators will be
required. Satisfactory transponder-network rel:iability is
obtained by placing a second transponder at each required
zone: inner approach, outer approach and lateral. This 1s a
total of six transponders required to instrument a single
approach direction and ten transponders required to instrument
both approach directions. (The count i1s not twelve because
the lateral transponders serve both approach directions).
Separating the redundant transponders provides more geometric
diversity. This permits landing navigation performance
better than the specafication in the normal saituation (no
fairlures) and performance equal to the specification in
the case of single transponder failures in every critical
pair.

Initralization of the landing navigation after a normal
deorbit and entry can be delayed safely untll the Shuttle is
within 150 km of the airport. However, a once-axround abort
(with no navigation update since launch) could require earliex
initialization: There is no problem due to communication
blackout or due to radio horizon limitations. The initial
position fix can be obtained utilizing the transponders at the
alrport. No additional transponders need be deployed to
insure satisfactory initialization performance. This 1s another
advantage of the precision-DME-aided inertial navigation.
Alternate concepts, such as those utilizing the proposed
scanning beam microwave landing aid, require additional sources
of navigation updating because the terminal area navigation aids
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do not have adequate range for the landing navigation initial-
rzation.

The haighest measurement rate is required during the inner
approach transponder overflight. This highest rate 1s one
range-plus-delta-range measurement pair every 0.6 sec, and is
within the capability of the CR-100 DME design. Normally
on final approach the measurement rate 1s one pair every ~
10 sec. During the long glide from the initial position fix
to the turn onto final approach, one pair every 30 sec 1s
satisfactory.

1f the delta-range circuits are not procured, then
additional transponders must be deployed to meet the touchdown
navigation accuracy specification. The cost of the additional
transponders will more than offset the unit cost savings
for a range-only DME design. Therefore the delta-range circuits
should be included in the precision DME specification for
Shuttle. The DME accuracy reguired 1s range-measurement bias
0.3 meter lo, multipath range random error 0.9 cos € meter
1o (e 1s elevation angle), other range random error 0.2 meter
1o, delta-range measurement random error 0.1 meter lo,

No real-time temperature, pressure, and humidity data
need be telemetered to the Shuttle for propagation corrections.
Standard-day data will provide a sea-level propagation uncer-
tainty of 50 parts per million, and this 1is adequate for
satisfactory landing navigation performance.

The location of the transponders must be surveyed and
stored in the onboard computer. A survey accuracy of 10 parts
per million of range from the runway i1s required.

Satisfactory rollout navigation 1s provided 1f a reliable
signal can be obtained from the lateral transponder at zero
elevation angle. If no signal i1s available from the lateral
transponder below an elevation angle of 2°, the touchdown
accuracy is adeguate, but the subsequent growth of the cross-
runway 1nertial navigation errors may require that the pilot
be able to "see to taxi". If the elevation cut-off 1s as
large as 5°, alternate lateral transponder placement 1s
required,

The landing navigation system performance i1s not critically
dependent on the assumed IMU performance. A comfortable
performance margin exists that can accommodate mildly degraded
IMU performance.
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APPENDIX A

ERROR STATE FORMULATICN OF THE ESTIMATION PROBLEM

There are two alternate methods of formulating the state
estimation problem, namely:

1. Estimate the total state vector, including the
vehicle position and velocity.

2. Estimate the error state vector, including the
errors 1n the indicated position and velocity of
the inertial navigation system.
The advantages of the error-state formulation can be seen by
a simple single—channel flat-earth example. The vehicle dynamics
are modeled by

ryr=v
v =a (a-1)
a=-1=nn

a

where r, v and a are the wvehicle position, velocity, and acceler-
ation, and where ng 1s the vehicle jerk. We might model the jerk
as white noise. Or we could recognize that the jerk i1s finite
and correlated, and therefore introduce more state variables
modeling the vehicle dynamics. Thas 1s a modeling decision which
must be made using engineering judgement.

An integrating accelerometer is available to measure the

vehicle velocity. The measurement Vieas 1S modeled by

Vieas = Va + n, (a-2)

where v; 1s the velocity information in the accelerometer and
n, 1S the measurement noise (such as due to guantization). The
dynamics of the velocity information in the accelerometer are '
modeled by
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Va = ablas ta
(A=3)

= 1

a
bias a
bias

where ap;sg 1s the accelerometer bias and ngp,ag 1S a white
noise chosen to model the fluctuations in the accelerometer
bias.

A radio-derived position measurement r 1s available.
meas
It 1s modeled by

Tmeas — ¥ 1 Tpias ¥ Dy (A-4)

where rhias 1S the radio bias and n, 1s the measurement noise.
The radio bias 1s modeled by

: = n (A-5)

r
bias r
bias

where n is a suitable white noise.
bias

In the total state formulation one constructs a Kalman
filter to accept the two sources of measurement (vmeas and
Tm and to estimate the elements of the state vector (r, v, a,

eas

«ee7 Va, 8prass Ybhiag) - The dimension of the state vector depends
on how many state variables were assigned to modeling the vehicle
dynamics. To achieve high accuracy, the velocity measurements
must be 1ncorporated frequently.

The alternate formulation 1s in terms of error quantities.
One must add to the system of equations a calculation of accelero-
meter-derived position. This 1s simply the integration of the
equation

a = vmeas (A=6)

This calculation is actually performed in the inertial navigation
subsystem. One defines the error variables

=) =y -r (A-7)

a -
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e = V_ ~ V (A-8)

For the purpose of filter construction, one considers that there
1s only one source of measurement. This 1s the difference between
the accelerometer-derived position and the radio-derived position.

Ar = Y.~ Theas {A-9) |

This measurement can be expressed in terms of the error state
variables as

Ar = (r + e. ) - (r + Y1 as + nr)
(A-10)

Ar = e -

Note the difference measurement is not a function of the actual
position r (under the linear assumptions of this saimple example).

The differential equations governing the error state
variables are:

(a-11)

r
bias r
bias

In the error state. formulation one constructs a Kalman
filter to accept the difference measurements {Ar) and to
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estimate the elements of the error state vector (ery, evys ap; g/
' Ypiasg)e Note that the problem of modeling the vehicle dynamics
does not exist with the error state formulation.

From this example one can see two significant advantages
of the error state formulation over the total state formulation:

1. The wvehicle acceleration and i1ts derivatives are not
required state variables. Hence one does not need to
model and estimate the vehicle acceleration and 1ts
derivatives. This reduces the dimension of the required
state space.

2. The error state variables are all slowly varying.
Hence the computations required to implement the
Kalman filter may be performed at a slow sample rate
with no significant loss in system accuracy. This
eases considerably the computer speed requirement.

While acceleraticon is not a required state variable, 1t
i1s an important driving noise, because vehicle acceleration
causes the gyros to precess, thus changing the platform align-
ment., Therefore the power-spectral density of the white noise,
which 1s assumed to be drivaing the three platform alignment
state variables, must be made a suitable non-stationary function
of the vehicle acceleration.
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APPENDIX B

ON TREATING DELTA-RANGE AS A RANGE~RATE MEASUREMENT

A delta-range measurement 1s sometimes referred to as a
range-rate or velocity measurement. Assuming such a measurement
1s a range-rate measurement, one might design a Kalman filter
formulation based on a range-rate dirfference measurement

' -
2’ =r

r calc ~ Fmeas (B-1)

where r.ozilc 1S the expected range-rate based on the indicated
velocity of the inertial navigation equations

Toale = 2 ° Yrns (B-2)

and Tmeas 1S by definitaion

meas = Armeas/At (B-3)

With this approach, a new source of error 1is introduced, because

Teas 18 not a true instantaneous range-rate measurement.

To 1llustrate this point, i1gnore all the other sources
of error. Consider only the finite-measurement-time effect.
The range rate is

r=h(t) - vit) (B-4)

The change 1in range during an interval At is

At/2
Ar = ’}( b(t) * v(t) dt (B-5) .
-At/2
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where £+ = 0 158 defined to be at the center of the interwval.
TIf one replaces v(t) and b(t) by their Taylor series expansions

2
v(£) = v(0) + a(0) £+ J(O)= + . . . (B-6)

2

b(t) = b(0) + é(O) t + p_(o)% .. (B~7)

1t can be shown that the range change 1s

Ar = b(0)*v(0)At + [b(0)-v(0) + 2b(0)-a(0) + b(0)*J(0)] At>/24

+ higher order terms (B-8)

It 1s evident that Ar/At (as an estimate of range rate at t=0
1s in error by a velocity

ex = [b(0)*v(0) + 2b(0)-a(0) + b(0)-J(0)1At?/24 (B-9)

r

An estimate of the maximum values of each of the three error

terms may be computed by assuming that the vehicle 1s 1000 meters
from the transponder, flying at a velocity with components of

100 m/sec perpendicular and parallel to the line-of-gight,
accelerating at l1lg as in a 45° banked turn (10 m/sec?), and having
a roll rate of 0.1 radian/sec. The three terms within the
brackets of Eg. (B-9) are then

by = v3/r2 = 1 m/sec3 (B-10)

2b-a = 29 v/r = 2 m./sec3 (B-11)
N 3

bed = ¢g = 1 m/sec (B-12)

Thus, a maximum value for the sum of the three terms could be

4 m/sec3. From Eq. (B~9), the resulting range-rate measurement
would have an error, depending on the choice of At, as shown
in Table B-1l.
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At (secq) e, (m/sec)
3 0.02
1.0 0.17
3.0 1.50
10.0 1l6.7

Table B-1 Maximum range-rate-measurement error due to vehicle
and line-of-sight kinemataics.

Clearly, to suppress these kinematic errors, the delta-range
measurement interval At should be chosen small. However,
choosing At small amplifies the random error of the range-rate
measurement

e; = eAr/At {(B-13)

With a delta-range random error ep, of 0.1 meter and At = 1 sec,
the range-rate error is .l m/sec. With At = 0.3 sec the range-
rate error is .3 m/sec. An appropriate value for At appears

to be in the range 0.3 to 1.0 sec.

One practical advantage of the range-rate-measurement
formulation is that the range-rate calculated from the velocity
of the 1inertial navigation equations, as in Eg. (B-2), 1s easily
calculated to a precision of 0.1 meter/sec. It will be more
difficult to calculate the change in range, as in Eg. (3-102),
to an accuracy of 0.1 meter.

The disadvantage of the range-rate formulation i1s the

inabilaity to select a large delta-range interval At to improve
the measurement "signal-to-noise ratio".
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APPENDIX C

COMPENSATION FOR NONLINEAR ELONGATION OF MEASURED RANGE

The equations for utilizing a range measurement to improve
the state vector estimate can be written in the following form:
The basic range difference measurement 1s

(C-1)

where rn 1s the calculated range based on the estimated position

and ry 1s the range measured by the DME. The measurement gradient
vector 1s

=B
4]

where by 1s the estimated direction from the transponder to

the vehicle and 0 indicates that all other elements of the h
vector are zero., The assumed measurement-srror variance is

calculated as

_ .2 2 .2 .2 2 2 2 _
rr = Ub + r, UP £f°(h) + Um cos” g + cr {C-3)

The standard deviations of transponder bias 0y, propagation
error Jp, multipath random error oy, and other random error oy,
are the error contributors accounted for in Eg. (C-3).

Given the calculated values of zr, h,, and r,, the Kalman
filter incorporates the measurement according to

k = P h/(h’ P h ¥ x) (C-4)
=% +k(z -1 x) (c-5)
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(T -k b7 + k r kT (C-6)

p¥ = (1 - k hO)P

However, 1f the measurement variance r 1s very small compared
with the position estimate covariance, nonlinear effects can
prevent proper filter convergence. Consider the geometry and
coordinate axes shown in Fig. C-1.

TRANSPONDER POSITION

ESTIMATED
VEHICLE POSITION

ACTUAL VEHICLE
€2 POSITION

Fig. C-1 Nonlinear elongation of measured range

The actual range rp may be expressed 1in terms of the estimated
range rg and the estimate error components e1, €2, €3 as

2 2 2,1/2

r, = [(rC + el) + e5 + e3] (c-7

A

This may be expanded in a Taylor series. Retaining only the
linear and quadratic terms yields

- 2 2 -
r, = Ig + ey + (e2 + e3)/2rc (C-8)

The measurement difference is
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I (rA + er) {C-9)

2. = _ =- &

2 2
r r 1~ (e2 + e3)/2rC (C-10)

where e. is the error in the range measurement.

In many applications with very precise DME (e, of the order
of 1 meter), the gquadratic term can easily be the largest contri-
butor to the measurement difference. Consider a position error
ey of 4 km and a range e of 200 km. The gquadratic term equals

e§/2rc = 40 meters (C-11)

It 1s clear that 1f such a 40 meter measurement difference were
assumed to be evidence of a 40 meter error ej, then the subsequent
filter performance would be unpredictable, to say the least.

Such an assumption underlies the linear Kalman filter implemen-
tation, Egs. (C-1l) through (C-6).

We have developed a satisfactory remedy to this problem.
Assume the random measurement error e, has mean zero and variance
Yy. Similarly, assume that the components of the estimation
error have mean zero and standard deviations ¢y, 02, ¢3. The
mean value of the measurement difference Eg. (C-10} 1s then

E[Zr] = ~(d§ + 0%)/2rc (C-12}

Note in spite of the unbiased estimate errors and measurement
error, the measurement difference 1s biased by the gquadratic
term. This nonlinear bias should be subtracted from the basic
measurement difference. That 1s, a modified measurement differ-
ence zy should be utilized in Eq. (C-5).

_ 2 -
z =2 + (02 + 03)2rc (C-13)

The random measurement error e, 1s assumed to be statistically
independent of the position-estimate-error components ej, ez, ej3.
Therefore, the mean square value of the measurement difference
Eg. (C-10) 1s
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E{zZ] = r + 02
r r

24 E{el(eg + eg)]/rC + E[(eg + e§)21/4ré (C-14)

To evaluate the indicated expectations, an assumption about
the probability distribution of the error vector [e1, ez, e3]
must be made. Assume a Gaussian distribution consistent with
the mean zero and component standard deviations o1, U3, 03
already assumed. Under the Gaussian assumption, the first
expectation term can be shown to be zero, leaving

2
1

2. _ 4 2 2 4 2 _
E{zrl =r, + o5 + E[e2 + 2e2 e + e31/4rC (C-15)

Assume the us and uz directions have been chosen so that ep and ej
are uncorrelated. Under the Gaussian assumption, uncorrelated
also implies ej and e3 are statlstlsally independent. Therefore,
the expectation of the product eZ e% 1s the product of the expec-
tations. Also under the Gaussiall aSsumption the expectation of
the fourth powers of e, and e3 can be evaluated in terms of the
standard deviations., As a result it can be shown

2 2

4 2
5 O3 + 303)/4rc (C-16)

2, _ 2 4
E[zr] = r. + oy + (302 + 20

The wvariance of the measurement difference is

variz_] E{zi] - (E[zr])z (C-17)

_ 2 4 4 2 _
Var[zr] =r, + oy + (02 + 03)/21:C (C-18)

The wvariance c% may be expressed in terms of the covariance P
and measurement gradient h as

of=n"Ph (c-19)

_ LT 4 4 2 _
var[z, ] =h" Ph + r + (05 + 03)/2rC (C-20}

The desired effect of the a priori variance rr utilized in the
standard filter Eg. (C-4) and Eg. (C-6) 1s the prevention of
a high weighting k from being placed on errors in the measurement
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difference z not related to the linear geometry represented by
the h vector. The desired effect can be accomplished by adding
the wvariance of the nonlinear effect to the variance ry of the
DME errors. That i1s, a modified variance ry should be utilized
in Egs. (C-4) and (C-86)

r- =1y _+ (04

4 2
r . 5 + 03)/2rC (C-21)

It was assumed that the u; and u3 directions were chosen so
that e, and e3 are uncorrelated. The variances of e2 and e3 may
be computed in terms of the covariance matrix Pry of the position
estimate in the following manner: One pair of orthogonal unit
vectors both orthogonal to the estimated transponder-to-vehicle
direction by 1s

)

unit (bn % re.

(c-22)

where I, 1s the estimated vehicle position. The two-dimensional
covariancCe matrix P' in the space spanned by u; and u, 1s

Paa Pab
P = (C-23)
P R
where
o
Paa = Yy Prr Y
P . =ur P (C-24)
ab =a ~rr Eb
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The variances c% and U% of the uncorrelated errors ey and ej
are the eigenvalues of P'. Solving the eigenvalue problem, one
finds

2 2 _ + _ 2 2 (1/2 _
Oyr O3 = (Paa + Pbb T [(Paa Pbb) + 4Pab] y/2 (C-25)

In summary, to compensate for the nonlinear elongation of
the measured range, insert Egs. (C-22), (C-24), (C-25), (C-13),
and (C-21) between standard Egs. (C~3) and (C-4).

A summary of these compensation equations 1s presented in
Table C-1.

Estimated line-of-sight coordinates

1
—a

v

il

unit (QE X £VE)

W, = 4, ¥ by

Position covariance normal to estimated line-of-sight

Paa = —Lla Prr Ea
Pab = Eg Prr B,
Pbb = Eg Prr Yy,
Eigenvariances of normal covariance
o5 05 = (B, + Py TLE,, - )%+ a2 1P

Modified range difference measurement

z' = z_ + (02 + 02)/2r
r r 2 3 C

Modified assumed measurement error variance

v 4 4 2
r, = I, + (02 + 03)/2rc

Table C-1 Compensation for Nonlinear Elongation of
Meagsured Range
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